Abstract
Purpose: To achieve high temporal frame rate, high spatial resolution and full-vocal-tract coverage for three-dimensional dynamic speech MRI by using low-rank modeling and sparse sampling. Methods: Three-dimensional dynamic speech MRI is enabled by integrating a novel data acquisition strategy and an image reconstruction method with the partial separability model: (a) a self-navigated sparse sampling strategy that accelerates data acquisition by collecting high-nominal-frame-rate cone navigator sand imaging data within a single repetition time, and (b) are construction method that recovers high-quality speech dynamics from sparse (k, t)-space data by enforcing joint low-rank and spatiotemporal total variation constraints. Results: The proposed method has been evaluated through in vivo experiments. A nominal temporal frame rate of 166 frames per second (defined based on a repetition time of 5.99 ms) was achieved for an imaging volume covering the entire vocal tract with a spatial resolution of 2.2 × 2.2 × 5.0 mm3. Practical utility of the proposed method was demonstrated via both validation experiments and a phonetics investigation. Conclusion: Three-dimensional dynamic speech imaging is possible with full-vocal-tract coverage, high spatial resolution and high nominal frame rate to provide dynamic speech data useful for phonetic studies. Magn Reson Med 77:1619–1629, 2017.
Original language | English (US) |
---|---|
Pages (from-to) | 1619-1629 |
Number of pages | 11 |
Journal | Magnetic Resonance in Medicine |
Volume | 77 |
Issue number | 4 |
DOIs | |
State | Published - Apr 1 2017 |
Keywords
- cone navigation
- dynamic speech imaging
- low-rank approximation
- partial separability
- sparsity
ASJC Scopus subject areas
- Radiology Nuclear Medicine and imaging