Abstract
Well crystallized and interconnected SnO2 nanoparticles (<5 nm) were synthesized via oxidation of exfoliated SnS2 sheets. The SnO2 nanoparticles exhibit a high total faradaic efficiency (FE) of 97% towards electrochemical reduction of CO2 at -0.95 V vs. the reversible hydrogen electrode (RHE). The main product ratio of CO/HCOO- which intrinsically correlates to the surface SnOx/Sn ratio variation varies with the applied potential. Beyond CO and HCOO- products formed via the two-electron transfer pathway, hydrocarbons and oxygenates are produced. The formation of hydrocarbon (CH4) versus oxygenate (C2H5OH) depends on the choice of electrolyte (KOH vs. KHCO3), both of which can reach a maximal faradaic efficiency of 10%. The distinctive grain boundary and exposed corner/step sites in the interconnected SnO2 nanoparticles contribute to the high FE of CO2 reduction and unique selectivity.
Original language | English (US) |
---|---|
Pages (from-to) | 10313-10319 |
Number of pages | 7 |
Journal | Journal of Materials Chemistry A |
Volume | 6 |
Issue number | 22 |
DOIs | |
State | Published - 2018 |
ASJC Scopus subject areas
- General Chemistry
- Renewable Energy, Sustainability and the Environment
- General Materials Science