TY - GEN
T1 - High Data Rate Near-Ultrasonic Communication with Consumer Devices
AU - Tabak, Gizem
AU - Lin, Xintian Eddie
AU - Singer, Andrew C.
N1 - Publisher Copyright:
© 2021 European Signal Processing Conference. All rights reserved.
PY - 2021
Y1 - 2021
N2 - Automating device pairing and credential exchange in consumer devices reduce the time users spend with mundane tasks and improve the user experience. Acoustic communication is gaining traction as a practical alternative to Bluetooth or Wi-Fi because it can enable quick and localized information transfer between consumer devices with built-in hardware. However, achieving high data rates (>1 kbps) in such systems has been a challenge because the systems and methods chosen for communication were not tailored to the application. In this work, a high data rate, near-ultrasonic communication (NUSC) system is proposed to transfer personal identification numbers (PINs) to establish a connection between consumer laptops using built-in microphones and speakers. The similarities between indoor near-ultrasonic and underwater acoustic communication (UWAC) channels are identified, and appropriate UWAC techniques are tailored to the NUSC system. The proposed system uses the near-ultrasonic band at 18-20 kHz, and employs coherent modulation and phase-coherent adaptive equalization. The capability of the proposed system is explored in simulated and field experiments that span different device orientations and distances. The experiments demonstrate data rates of 4 kbps over distances of up to 5 meters, which is an order of magnitude higher than the data rates reported with similar systems in the literature.
AB - Automating device pairing and credential exchange in consumer devices reduce the time users spend with mundane tasks and improve the user experience. Acoustic communication is gaining traction as a practical alternative to Bluetooth or Wi-Fi because it can enable quick and localized information transfer between consumer devices with built-in hardware. However, achieving high data rates (>1 kbps) in such systems has been a challenge because the systems and methods chosen for communication were not tailored to the application. In this work, a high data rate, near-ultrasonic communication (NUSC) system is proposed to transfer personal identification numbers (PINs) to establish a connection between consumer laptops using built-in microphones and speakers. The similarities between indoor near-ultrasonic and underwater acoustic communication (UWAC) channels are identified, and appropriate UWAC techniques are tailored to the NUSC system. The proposed system uses the near-ultrasonic band at 18-20 kHz, and employs coherent modulation and phase-coherent adaptive equalization. The capability of the proposed system is explored in simulated and field experiments that span different device orientations and distances. The experiments demonstrate data rates of 4 kbps over distances of up to 5 meters, which is an order of magnitude higher than the data rates reported with similar systems in the literature.
UR - http://www.scopus.com/inward/record.url?scp=85123172447&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85123172447&partnerID=8YFLogxK
U2 - 10.23919/EUSIPCO54536.2021.9615967
DO - 10.23919/EUSIPCO54536.2021.9615967
M3 - Conference contribution
AN - SCOPUS:85123172447
T3 - European Signal Processing Conference
SP - 1681
EP - 1685
BT - 29th European Signal Processing Conference, EUSIPCO 2021 - Proceedings
PB - European Signal Processing Conference, EUSIPCO
T2 - 29th European Signal Processing Conference, EUSIPCO 2021
Y2 - 23 August 2021 through 27 August 2021
ER -