Hierarchical N-Doped Carbon as CO2 Adsorbent with High CO2 Selectivity from Rationally Designed Polypyrrole Precursor

John W.F. To, Jiajun He, Jianguo Mei, Reza Haghpanah, Zheng Chen, Tadanori Kurosawa, Shucheng Chen, Won Gyu Bae, Lijia Pan, Jeffrey B.H. Tok, Jennifer Wilcox, Zhenan Bao

Research output: Contribution to journalArticlepeer-review


Carbon capture and sequestration from point sources is an important component in the CO2 emission mitigation portfolio. In particular, sorbents with both high capacity and selectivity are required for reducing the cost of carbon capture. Although physisorbents have the advantage of low energy consumption for regeneration, it remains a challenge to obtain both high capacity and sufficient CO2/N2 selectivity at the same time. Here, we report the controlled synthesis of a novel N-doped hierarchical carbon that exhibits record-high Henry's law CO2/N2 selectivity among physisorptive carbons while having a high CO2 adsorption capacity. Specifically, our synthesis involves the rational design of a modified pyrrole molecule that can co-assemble with the soft Pluronic template via hydrogen bonding and electrostatic interactions to give rise to mesopores followed by carbonization. The low-temperature carbonization and activation processes allow for the development of ultrasmall pores (d < 0.5 nm) and preservation of nitrogen moieties, essential for enhanced CO2 affinity. Furthermore, our described work provides a strategy to initiate developments of rationally designed porous conjugated polymer structures and carbon-based materials for various potential applications.

Original languageEnglish (US)
Pages (from-to)1001-1009
Number of pages9
JournalJournal of the American Chemical Society
Issue number3
StatePublished - Jan 27 2016
Externally publishedYes

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry


Dive into the research topics of 'Hierarchical N-Doped Carbon as CO2 Adsorbent with High CO2 Selectivity from Rationally Designed Polypyrrole Precursor'. Together they form a unique fingerprint.

Cite this