Hierarchical modeling and scalable algorithms for in-situ characterization of 3D IC packages

Yang Shao, Shu Wang, Zhen Peng

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The objective of this work is to investigate high-resolution and high-performance computational methods for the first-principles analysis of in-situ product-level integrated circuit (IC) packages. The novelties and key technical approaches of the proposed work include: (i) a scalable geometry-based domain decomposition (DD) method to conquer the geometric complexity of physical domain, which leads to quasi-optimal convergence that is provably scalable for multi-scale objects. Moreover, it results in parallel and scalable computational algorithms to reduce the time complexity via high performance computing facilities; (ii) a hierarchical multi-scale simulator for high-definition IC package systems, in which the technical ingredients include a skeleton-based multi-region multi-solver method and a variational macro-micro analysis for multi-scale modeling. The capability and benefits of the algorithms are explored and illustrated through several real-world 3D IC package applications.

Original languageEnglish (US)
Title of host publication2016 IEEE/ACES International Conference on Wireless Information Technology, ICWITS 2016 and System and Applied Computational Electromagnetics, ACES 2016 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781509012596
DOIs
StatePublished - May 4 2016
Externally publishedYes
EventIEEE/ACES International Conference on Wireless Information Technology, ICWITS 2016 and System and Applied Computational Electromagnetics, ACES 2016 - Honolulu, United States
Duration: Mar 13 2016Mar 17 2016

Publication series

Name2016 IEEE/ACES International Conference on Wireless Information Technology, ICWITS 2016 and System and Applied Computational Electromagnetics, ACES 2016 - Proceedings

Other

OtherIEEE/ACES International Conference on Wireless Information Technology, ICWITS 2016 and System and Applied Computational Electromagnetics, ACES 2016
Country/TerritoryUnited States
CityHonolulu
Period3/13/163/17/16

ASJC Scopus subject areas

  • Computational Mathematics
  • Signal Processing
  • Instrumentation
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Hierarchical modeling and scalable algorithms for in-situ characterization of 3D IC packages'. Together they form a unique fingerprint.

Cite this