Heterogeneous network embedding via deep architectures

Shiyu Chang, Wei Han, Jiliang Tang, Guo Jun Qi, Charu C. Aggarwal, Thomas S. Huang

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Data embedding is used in many machine learning applications to create low-dimensional feature representations, which preserves the structure of data points in their original space. In this paper, we examine the scenario of a heterogeneous network with nodes and content of various types. Such networks are notoriously difficult to mine because of the bewildering combination of heterogeneous contents and structures. The creation of a multidimensional embedding of such data opens the door to the use of a wide variety of off-the-shelf mining techniques for multidimensional data. Despite the importance of this problem, limited efforts have been made on embedding a network of scalable, dynamic and heterogeneous data. In such cases, both the content and linkage structure provide important cues for creating a unified feature representation of the underlying network. In this paper, we design a deep embedding algorithm for networked data. A highly nonlinear multi-layered embedding function is used to capture the complex interactions between the heterogeneous data in a network. Our goal is to create a multi-resolution deep embedding function, that reflects both the local and global network structures, and makes the resulting embedding useful for a variety of data mining tasks. In particular, we demonstrate that the rich content and linkage information in a heterogeneous network can be captured by such an approach, so that similarities among cross-modal data can be measured directly in a common embedding space. Once this goal has been achieved, a wide variety of data mining problems can be solved by applying off-the-shelf algorithms designed for handling vector representations. Our experiments on real-world network datasets show the effectiveness and scalability of the proposed algorithm as compared to the state-of-the-art embedding methods.

Original languageEnglish (US)
Title of host publicationKDD 2015 - Proceedings of the 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Number of pages10
ISBN (Electronic)9781450336642
StatePublished - Aug 10 2015
Event21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2015 - Sydney, Australia
Duration: Aug 10 2015Aug 13 2015

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining


Other21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2015


  • Cross-domain knowledge propagation
  • Deep learning
  • Dimensionality reduction
  • Feature learning
  • Heterogeneous embedding
  • Network embedding

ASJC Scopus subject areas

  • Software
  • Information Systems


Dive into the research topics of 'Heterogeneous network embedding via deep architectures'. Together they form a unique fingerprint.

Cite this