TY - JOUR
T1 - Hepatic autophagy and mitophagy status in dairy cows with subclinical and clinical ketosis
AU - Shen, Taiyu
AU - Xu, Feng
AU - Fang, Zhiyuan
AU - Loor, Juan J.
AU - Ouyang, Hongsheng
AU - Chen, Meng
AU - Jin, Bo
AU - Wang, Xinghui
AU - Shi, Zhen
AU - Zhu, Yiwei
AU - Liang, Yusheng
AU - Ju, Lingxue
AU - Song, Yuxiang
AU - Wang, Zhe
AU - Li, Xinwei
AU - Du, Xiliang
AU - Liu, Guowen
N1 - Funding Information:
This work was supported by the National Natural Science Foundation of China (Beijing, China; grant nos. 32002349 and 31772810), China Postdoctoral Science Foundation (2019TQ0115 and 2019M661216), and National Key Research and Development Program (Beijing, China; grant no. 2016YFD0501206). The authors declare no competing financial interests.
Publisher Copyright:
© 2021 American Dairy Science Association
PY - 2021/4
Y1 - 2021/4
N2 - Severe negative energy balance around parturition is an important contributor to ketosis, a metabolic disorder that occurs most frequently in the peripartal period. Autophagy and mitophagy are important processes responsible for breaking down useless or toxic cellular material, and in particular damaged mitochondria. However, the role of autophagy and mitophagy during the occurrence and development of ketosis is unclear. The objective of this study was to investigate autophagy and mitophagy in the livers of cows with subclinical ketosis (SCK) and clinical ketosis (CK). We assessed autophagy by measuring the protein abundance of microtubule-associated protein 1 light chain 3-II (LC3-II; encoded by MAP1LC3) and sequestosome-1 (p62, encoded by SQSTM1), as well as the mRNA abundance of autophagy-related genes 5 (ATG5), 7 (ATG7), and 12 (ATG12), beclin1 (BECN1), and phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3). Mitophagy was evaluated by measuring the protein abundance of the mitophagy upstream regulators PTEN-induced putative kinase 1 (PINK1) and Parkin. Liver and blood samples were collected from healthy cows [n = 15; blood β-hydroxybutyrate (BHB) concentration <1.2 mM], cows with SCK (n = 15; blood BHB concentration 1.2 to 3.0 mM) and cows with CK (n = 15; blood BHB concentration >3.0 mM with clinical signs) with similar lactation numbers (median = 3, range = 2 to 4) and days in milk (median = 6, range = 3 to 9). The serum activity of aspartate aminotransferase and alanine aminotransferase was greater in cows with CK than in healthy cows. Levels of oxidative stress biomarkers malondialdehyde and hydrogen peroxide were also higher in liver tissue from ketotic cows (SCK and CK) than from healthy cows. Compared with cows with CK and healthy cows, the hepatic mRNA abundance of MAP1LC3, SQSTM1, ATG5, ATG7, ATG12, and PIK3C3 was upregulated in cows with SCK. Compared with healthy cows, cows with SCK had a lower abundance of p62 and a greater abundance of LC3-II, but levels of both were higher in cows with CK. The mRNA abundance of ATG12 was lower in cows with CK than in healthy cows. Furthermore, the hepatic protein abundance of PINK1 and Parkin was greater in cows with SCK and slightly lower in cows with CK than in healthy cows. These data demonstrated differences in the hepatic activities of autophagy and mitophagy in cows with SCK compared with cows with CK. Although the precise mechanisms for these differences could not be discerned, autophagy and mitophagy seem to be involved in ketosis.
AB - Severe negative energy balance around parturition is an important contributor to ketosis, a metabolic disorder that occurs most frequently in the peripartal period. Autophagy and mitophagy are important processes responsible for breaking down useless or toxic cellular material, and in particular damaged mitochondria. However, the role of autophagy and mitophagy during the occurrence and development of ketosis is unclear. The objective of this study was to investigate autophagy and mitophagy in the livers of cows with subclinical ketosis (SCK) and clinical ketosis (CK). We assessed autophagy by measuring the protein abundance of microtubule-associated protein 1 light chain 3-II (LC3-II; encoded by MAP1LC3) and sequestosome-1 (p62, encoded by SQSTM1), as well as the mRNA abundance of autophagy-related genes 5 (ATG5), 7 (ATG7), and 12 (ATG12), beclin1 (BECN1), and phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3). Mitophagy was evaluated by measuring the protein abundance of the mitophagy upstream regulators PTEN-induced putative kinase 1 (PINK1) and Parkin. Liver and blood samples were collected from healthy cows [n = 15; blood β-hydroxybutyrate (BHB) concentration <1.2 mM], cows with SCK (n = 15; blood BHB concentration 1.2 to 3.0 mM) and cows with CK (n = 15; blood BHB concentration >3.0 mM with clinical signs) with similar lactation numbers (median = 3, range = 2 to 4) and days in milk (median = 6, range = 3 to 9). The serum activity of aspartate aminotransferase and alanine aminotransferase was greater in cows with CK than in healthy cows. Levels of oxidative stress biomarkers malondialdehyde and hydrogen peroxide were also higher in liver tissue from ketotic cows (SCK and CK) than from healthy cows. Compared with cows with CK and healthy cows, the hepatic mRNA abundance of MAP1LC3, SQSTM1, ATG5, ATG7, ATG12, and PIK3C3 was upregulated in cows with SCK. Compared with healthy cows, cows with SCK had a lower abundance of p62 and a greater abundance of LC3-II, but levels of both were higher in cows with CK. The mRNA abundance of ATG12 was lower in cows with CK than in healthy cows. Furthermore, the hepatic protein abundance of PINK1 and Parkin was greater in cows with SCK and slightly lower in cows with CK than in healthy cows. These data demonstrated differences in the hepatic activities of autophagy and mitophagy in cows with SCK compared with cows with CK. Although the precise mechanisms for these differences could not be discerned, autophagy and mitophagy seem to be involved in ketosis.
KW - LC3
KW - dairy cow
KW - ketosis
KW - liver damage
KW - oxidative stress
UR - http://www.scopus.com/inward/record.url?scp=85100399209&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100399209&partnerID=8YFLogxK
U2 - 10.3168/jds.2020-19150
DO - 10.3168/jds.2020-19150
M3 - Article
C2 - 33551163
AN - SCOPUS:85100399209
VL - 104
SP - 4847
EP - 4857
JO - Journal of Dairy Science
JF - Journal of Dairy Science
SN - 0022-0302
IS - 4
ER -