HELIX: Accelerating human-in-the-loop machine learning

Doris Xin, Litian Ma, Jialin Liu, Stephen Macke, Shuchen Song, Aditya Parameswaran

Research output: Contribution to journalConference articlepeer-review


Data application developers and data scientists spend an inordinate amount of time iterating on machine learning (ML) workflows- by modifying the data pre-processing, model training, and postprocessing steps-via trial-and-error to achieve the desired model performance. Existing work on accelerating machine learning focuses on speeding up one-shot execution of workflows, failing to address the incremental and dynamic nature of typical ML development. We propose HELIX, a declarative machine learning system that accelerates iterative development by optimizing workflow execution end-to-end and across iterations. HELIX minimizes the runtime per iteration via program analysis and intelligent reuse of previous results, which are selectively materialized-trading off the cost of materialization for potential future benefits-to speed up future iterations. Additionally, HELIX offers a graphical interface to visualize workflow DAGs and compare versions to facilitate iterative development. Through two ML applications, in classification and in structured prediction, attendees will experience the succinctness of HELIX's programming interface and the speed and ease of iterative development using HELIX. In our evaluations, HELIX achieved up to an order of magnitude reduction in cumulative run time compared to state-of-the-art machine learning tools.

Original languageEnglish (US)
Pages (from-to)1958-1961
Number of pages4
JournalProceedings of the VLDB Endowment
Issue number12
StatePublished - 2018
Event44th International Conference on Very Large Data Bases, VLDB 2018 - Rio de Janeiro, Brazil
Duration: Aug 27 2018Aug 31 2018

ASJC Scopus subject areas

  • Computer Science (miscellaneous)
  • Computer Science(all)


Dive into the research topics of 'HELIX: Accelerating human-in-the-loop machine learning'. Together they form a unique fingerprint.

Cite this