TY - JOUR
T1 - Heat transfer fouling characteristics of microfiltered thin stillage from the dry grind process
AU - Arora, Amit
AU - Dien, Bruce S.
AU - Belyea, Ronald L.
AU - Singh, Vijay
AU - Tumbleson, M. E.
AU - Rausch, Kent D.
N1 - Funding Information:
The authors gratefully acknowledge support from Graver Technologies, Glasgow, DE. Partially funded by Illinois Council for Food and Agricultural Research (IDA CF07I-012-1-SEN) and National Center for Agricultural Utilization Research, Specific Cooperative Agreement (SCA 58-3620-2-149), Agriculture Research Service, USDA, Peoria, IL.
PY - 2010/8
Y1 - 2010/8
N2 - We investigated effects of microfiltration (MF) on heat transfer fouling tendencies of thin stillage. A stainless steel MF membrane (0.1 micron pore size) was used to remove solids from thin stillage. At filtration conditions of 690 kPa, the MF process effectively recovered total solids from thin stillage. Thin stillage was concentrated from 7.0% to 22.4% solids with average permeate flux rates of 180 ± 30 L/m2/h at 75 °C. In retentate streams, protein and fat contents were increased from 23.5 and 16.7% db to 27.6 and 31.1% db, respectively, and ash content was reduced from 10.5% to 3.8% db. Removal of solids, protein and fat generated a microfiltration permeate (MFP) that was used as an input stream to the fouling probe system; MFP fouling tendencies were measured. An annular fouling probe was used to measure fouling tendencies of thin stillage from a commercial dry grind facility. When comparing diluted thin stillage (DTS) stream and MFP, a reduction in solids concentration was not the only reason of fouling decrement. Selective removal of protein and fat played an important role in mitigating the fouling. At t = 10 h, mean fouling rates of MFP were an order of magnitude lower when compared to thin stillage and diluted streams. When maximum probe temperature (200 °C) was reached, mean fouling rates for thin stillage, DTS and MFP were 7.1 × 10-4, 4.2 × 10-4 and 2.6 × 10-4 m2 °C/kW/min, respectively. In DTS and MFP, the induction period was prolonged by factors of 4.3 and 9.5, respectively, compared to the induction period for thin stillage fouling. Mean fouling rates were decreased by factors of 2.3 and 23.4 for DTS and MFP, respectively. Fouling of MFP took twice the time to reach a probe temperature of 200 °C than did thin stillage (22 h vs 10 h, respectively). A reduction in heat transfer fouling could be achieved by altering process stream composition using microfiltration.
AB - We investigated effects of microfiltration (MF) on heat transfer fouling tendencies of thin stillage. A stainless steel MF membrane (0.1 micron pore size) was used to remove solids from thin stillage. At filtration conditions of 690 kPa, the MF process effectively recovered total solids from thin stillage. Thin stillage was concentrated from 7.0% to 22.4% solids with average permeate flux rates of 180 ± 30 L/m2/h at 75 °C. In retentate streams, protein and fat contents were increased from 23.5 and 16.7% db to 27.6 and 31.1% db, respectively, and ash content was reduced from 10.5% to 3.8% db. Removal of solids, protein and fat generated a microfiltration permeate (MFP) that was used as an input stream to the fouling probe system; MFP fouling tendencies were measured. An annular fouling probe was used to measure fouling tendencies of thin stillage from a commercial dry grind facility. When comparing diluted thin stillage (DTS) stream and MFP, a reduction in solids concentration was not the only reason of fouling decrement. Selective removal of protein and fat played an important role in mitigating the fouling. At t = 10 h, mean fouling rates of MFP were an order of magnitude lower when compared to thin stillage and diluted streams. When maximum probe temperature (200 °C) was reached, mean fouling rates for thin stillage, DTS and MFP were 7.1 × 10-4, 4.2 × 10-4 and 2.6 × 10-4 m2 °C/kW/min, respectively. In DTS and MFP, the induction period was prolonged by factors of 4.3 and 9.5, respectively, compared to the induction period for thin stillage fouling. Mean fouling rates were decreased by factors of 2.3 and 23.4 for DTS and MFP, respectively. Fouling of MFP took twice the time to reach a probe temperature of 200 °C than did thin stillage (22 h vs 10 h, respectively). A reduction in heat transfer fouling could be achieved by altering process stream composition using microfiltration.
KW - Corn
KW - Ethanol
KW - Evaporator fouling
UR - http://www.scopus.com/inward/record.url?scp=77955494883&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77955494883&partnerID=8YFLogxK
U2 - 10.1016/j.biortech.2010.03.077
DO - 10.1016/j.biortech.2010.03.077
M3 - Article
C2 - 20395132
AN - SCOPUS:77955494883
SN - 0960-8524
VL - 101
SP - 6521
EP - 6527
JO - Bioresource Technology
JF - Bioresource Technology
IS - 16
ER -