HDMI: High-order deep multiplex infomax

Baoyu Jing, Chanyoung Park, Hanghang Tong

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Networks have been widely used to represent the relations between objects such as academic networks and social networks, and learning embedding for networks has thus garnered plenty of research attention. Self-supervised network representation learning aims at extracting node embedding without external supervision. Recently, maximizing the mutual information between the local node embedding and the global summary (e.g. Deep Graph Infomax, or DGI for short) has shown promising results on many downstream tasks such as node classification. However, there are two major limitations of DGI. Firstly, DGI merely considers the extrinsic supervision signal (i.e., the mutual information between node embedding and global summary) while ignores the intrinsic signal (i.e., the mutual dependence between node embedding and node attributes). Secondly, nodes in a real-world network are usually connected by multiple edges with different relations, while DGI does not fully explore the various relations among nodes. To address the above-mentioned problems, we propose a novel framework, called High-order Deep Multiplex Infomax (HDMI), for learning node embedding on multiplex networks in a self-supervised way. To be more specific, we first design a joint supervision signal containing both extrinsic and intrinsic mutual information by high-order mutual information, and we propose a High-order Deep Infomax (HDI) to optimize the proposed supervision signal. Then we propose an attention based fusion module to combine node embedding from different layers of the multiplex network. Finally, we evaluate the proposed HDMI on various downstream tasks such as unsupervised clustering and supervised classification. The experimental results show that HDMI achieves state-of-the-art performance on these tasks.

Original languageEnglish (US)
Title of host publicationThe Web Conference 2021 - Proceedings of the World Wide Web Conference, WWW 2021
PublisherAssociation for Computing Machinery, Inc
Pages2414-2424
Number of pages11
ISBN (Electronic)9781450383127
DOIs
StatePublished - Apr 19 2021
Event2021 World Wide Web Conference, WWW 2021 - Ljubljana, Slovenia
Duration: Apr 19 2021Apr 23 2021

Publication series

NameThe Web Conference 2021 - Proceedings of the World Wide Web Conference, WWW 2021

Conference

Conference2021 World Wide Web Conference, WWW 2021
Country/TerritorySlovenia
CityLjubljana
Period4/19/214/23/21

Keywords

  • High-order Mutual Information
  • Multiplex Networks
  • Network Representation Learning

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Software

Fingerprint

Dive into the research topics of 'HDMI: High-order deep multiplex infomax'. Together they form a unique fingerprint.

Cite this