Has Large-Scale Named-Entity Network Analysis Been Resting on a Flawed Assumption?

Brent D. Fegley, Vetle Ingvald Torvik

Research output: Contribution to journalArticle

Abstract

The assumption that a name uniquely identifies an entity introduces two types of errors: splitting treats one entity as two or more (because of name variants); lumping treats multiple entities as if they were one (because of shared names). Here we investigate the extent to which splitting and lumping affect commonly-used measures of large-scale named-entity networks within two disambiguated bibliographic datasets: one for co-author names in biomedicine (PubMed, 2003-2007); the other for co-inventor names in U.S. patents (USPTO, 2003-2007). In both cases, we find that splitting has relatively little effect, whereas lumping has a dramatic effect on network measures. For example, in the biomedical co-authorship network, lumping (based on last name and both initials) drives several measures down: the global clustering coefficient by a factor of 4 (from 0.265 to 0.066); degree assortativity by a factor of ∼13 (from 0.763 to 0.06); and average shortest path by a factor of 1.3 (from 5.9 to 4.5). These results can be explained in part by the fact that lumping artificially creates many intransitive relationships and high-degree vertices. This effect of lumping is much less dramatic but persists with measures that give less weight to high-degree vertices, such as the mean local clustering coefficient and log-based degree assortativity. Furthermore, the log-log distribution of collaborator counts follows a much straighter line (power law) with splitting and lumping errors than without, particularly at the low and the high counts. This suggests that part of the power law often observed for collaborator counts in science and technology reflects an artifact: name ambiguity.

Original languageEnglish (US)
Article numbere70299
JournalPloS one
Volume8
Issue number7
DOIs
StatePublished - Jul 24 2013

Fingerprint

patents
Electric network analysis
Names
Cluster Analysis
Inventors
Authorship
Patents
PubMed
Artifacts
Technology
Weights and Measures

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Cite this

Has Large-Scale Named-Entity Network Analysis Been Resting on a Flawed Assumption? / Fegley, Brent D.; Torvik, Vetle Ingvald.

In: PloS one, Vol. 8, No. 7, e70299, 24.07.2013.

Research output: Contribution to journalArticle

@article{f9a072e3ad644e5daae45053dbcdbfe8,
title = "Has Large-Scale Named-Entity Network Analysis Been Resting on a Flawed Assumption?",
abstract = "The assumption that a name uniquely identifies an entity introduces two types of errors: splitting treats one entity as two or more (because of name variants); lumping treats multiple entities as if they were one (because of shared names). Here we investigate the extent to which splitting and lumping affect commonly-used measures of large-scale named-entity networks within two disambiguated bibliographic datasets: one for co-author names in biomedicine (PubMed, 2003-2007); the other for co-inventor names in U.S. patents (USPTO, 2003-2007). In both cases, we find that splitting has relatively little effect, whereas lumping has a dramatic effect on network measures. For example, in the biomedical co-authorship network, lumping (based on last name and both initials) drives several measures down: the global clustering coefficient by a factor of 4 (from 0.265 to 0.066); degree assortativity by a factor of ∼13 (from 0.763 to 0.06); and average shortest path by a factor of 1.3 (from 5.9 to 4.5). These results can be explained in part by the fact that lumping artificially creates many intransitive relationships and high-degree vertices. This effect of lumping is much less dramatic but persists with measures that give less weight to high-degree vertices, such as the mean local clustering coefficient and log-based degree assortativity. Furthermore, the log-log distribution of collaborator counts follows a much straighter line (power law) with splitting and lumping errors than without, particularly at the low and the high counts. This suggests that part of the power law often observed for collaborator counts in science and technology reflects an artifact: name ambiguity.",
author = "Fegley, {Brent D.} and Torvik, {Vetle Ingvald}",
year = "2013",
month = "7",
day = "24",
doi = "10.1371/journal.pone.0070299",
language = "English (US)",
volume = "8",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "7",

}

TY - JOUR

T1 - Has Large-Scale Named-Entity Network Analysis Been Resting on a Flawed Assumption?

AU - Fegley, Brent D.

AU - Torvik, Vetle Ingvald

PY - 2013/7/24

Y1 - 2013/7/24

N2 - The assumption that a name uniquely identifies an entity introduces two types of errors: splitting treats one entity as two or more (because of name variants); lumping treats multiple entities as if they were one (because of shared names). Here we investigate the extent to which splitting and lumping affect commonly-used measures of large-scale named-entity networks within two disambiguated bibliographic datasets: one for co-author names in biomedicine (PubMed, 2003-2007); the other for co-inventor names in U.S. patents (USPTO, 2003-2007). In both cases, we find that splitting has relatively little effect, whereas lumping has a dramatic effect on network measures. For example, in the biomedical co-authorship network, lumping (based on last name and both initials) drives several measures down: the global clustering coefficient by a factor of 4 (from 0.265 to 0.066); degree assortativity by a factor of ∼13 (from 0.763 to 0.06); and average shortest path by a factor of 1.3 (from 5.9 to 4.5). These results can be explained in part by the fact that lumping artificially creates many intransitive relationships and high-degree vertices. This effect of lumping is much less dramatic but persists with measures that give less weight to high-degree vertices, such as the mean local clustering coefficient and log-based degree assortativity. Furthermore, the log-log distribution of collaborator counts follows a much straighter line (power law) with splitting and lumping errors than without, particularly at the low and the high counts. This suggests that part of the power law often observed for collaborator counts in science and technology reflects an artifact: name ambiguity.

AB - The assumption that a name uniquely identifies an entity introduces two types of errors: splitting treats one entity as two or more (because of name variants); lumping treats multiple entities as if they were one (because of shared names). Here we investigate the extent to which splitting and lumping affect commonly-used measures of large-scale named-entity networks within two disambiguated bibliographic datasets: one for co-author names in biomedicine (PubMed, 2003-2007); the other for co-inventor names in U.S. patents (USPTO, 2003-2007). In both cases, we find that splitting has relatively little effect, whereas lumping has a dramatic effect on network measures. For example, in the biomedical co-authorship network, lumping (based on last name and both initials) drives several measures down: the global clustering coefficient by a factor of 4 (from 0.265 to 0.066); degree assortativity by a factor of ∼13 (from 0.763 to 0.06); and average shortest path by a factor of 1.3 (from 5.9 to 4.5). These results can be explained in part by the fact that lumping artificially creates many intransitive relationships and high-degree vertices. This effect of lumping is much less dramatic but persists with measures that give less weight to high-degree vertices, such as the mean local clustering coefficient and log-based degree assortativity. Furthermore, the log-log distribution of collaborator counts follows a much straighter line (power law) with splitting and lumping errors than without, particularly at the low and the high counts. This suggests that part of the power law often observed for collaborator counts in science and technology reflects an artifact: name ambiguity.

UR - http://www.scopus.com/inward/record.url?scp=84880764942&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84880764942&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0070299

DO - 10.1371/journal.pone.0070299

M3 - Article

C2 - 23894639

AN - SCOPUS:84880764942

VL - 8

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 7

M1 - e70299

ER -