TY - JOUR
T1 - Halonitromethane Drinking Water Disinfection Byproducts
T2 - Chemical Characterization and Mammalian Cell Cytotoxicity and Genotoxicity
AU - Plewa, Michael J.
AU - Wagner, Elizabeth D.
AU - Jazwierska, Paulina
AU - Richardson, Susan D.
AU - Chen, Paul H.
AU - McKague, A. Bruce
PY - 2004/1/1
Y1 - 2004/1/1
N2 - Halonitromethanes are drinking water disinfection byproducts that have recently received a high priority for health effects research from the U.S. Environmental Protection Agency (EPA). Our purpose was to identify and synthesize where necessary the mixed halonitromethanes and to determine the chronic cytotoxicity and the acute genotoxicity of these agents in mammalian cells. The halonitromethanes included bromonitromethane (BNM), dibromonitromethane (DBNM), tribromonitromethane (TBNM), bromochloronitromethane (BCNM), dibromochloronitromethane (DBCNM), bromodichloronitromethane (BDCNM), chloronitromethane (CNM), dichloronitromethane (DCNM), and trichloronitromethane (TCNM). Low- and high-resolution gas chromatography/mass spectrometry (GC/MS) was used to identify the mixed chloro-bromonitromethanes in finished drinking waters, and analytical standards that were not commercially available were synthesized (BDCNM, DBCNM, TBNM, CNM, DCNM, BCNM). The rank order of their chronic cytotoxicity (72 h exposure) to Chinese hamster ovary (CHO) cells was DBNM > DBCNM > BNM > TBNM > BDCNM > BCNM > DCNM > CNM > TCNM. The rank order to induce genomic DNA damage in CHO cells was DBNM > BDCNM > TBNM > TCNM > BNM > DBCNM > BCNM > DCNM > CNM. The brominated nitromethanes were more cytotoxic and genotoxic than their chlorinated analogues. This research demonstrated the integration of the procedures for the analytical chemistry and analytical biology when working with limited amounts of sample. The halonitromethanes are potent mammalian cell cytotoxins and genotoxins and may pose a hazard to the public health and the environment.
AB - Halonitromethanes are drinking water disinfection byproducts that have recently received a high priority for health effects research from the U.S. Environmental Protection Agency (EPA). Our purpose was to identify and synthesize where necessary the mixed halonitromethanes and to determine the chronic cytotoxicity and the acute genotoxicity of these agents in mammalian cells. The halonitromethanes included bromonitromethane (BNM), dibromonitromethane (DBNM), tribromonitromethane (TBNM), bromochloronitromethane (BCNM), dibromochloronitromethane (DBCNM), bromodichloronitromethane (BDCNM), chloronitromethane (CNM), dichloronitromethane (DCNM), and trichloronitromethane (TCNM). Low- and high-resolution gas chromatography/mass spectrometry (GC/MS) was used to identify the mixed chloro-bromonitromethanes in finished drinking waters, and analytical standards that were not commercially available were synthesized (BDCNM, DBCNM, TBNM, CNM, DCNM, BCNM). The rank order of their chronic cytotoxicity (72 h exposure) to Chinese hamster ovary (CHO) cells was DBNM > DBCNM > BNM > TBNM > BDCNM > BCNM > DCNM > CNM > TCNM. The rank order to induce genomic DNA damage in CHO cells was DBNM > BDCNM > TBNM > TCNM > BNM > DBCNM > BCNM > DCNM > CNM. The brominated nitromethanes were more cytotoxic and genotoxic than their chlorinated analogues. This research demonstrated the integration of the procedures for the analytical chemistry and analytical biology when working with limited amounts of sample. The halonitromethanes are potent mammalian cell cytotoxins and genotoxins and may pose a hazard to the public health and the environment.
UR - http://www.scopus.com/inward/record.url?scp=0346154754&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0346154754&partnerID=8YFLogxK
U2 - 10.1021/es030477l
DO - 10.1021/es030477l
M3 - Article
C2 - 14740718
AN - SCOPUS:0346154754
SN - 0013-936X
VL - 38
SP - 62
EP - 68
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 1
ER -