Hallucination Improves the Performance of Unsupervised Visual Representation Learning

Jing Wu, Jennifer Hobbs, Naira Hovakimyan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Contrastive learning models based on Siamese structure have demonstrated remarkable performance in self-supervised learning. Such a success of contrastive learning relies on two conditions, a sufficient number of positive pairs and adequate variations between them. If the conditions are not met, these frameworks will lack semantic contrast and be fragile on overfitting. To address these two issues, we propose Hallucinator that could efficiently generate additional positive samples for further contrast. The Hallucinator is differentiable and creates new data in the feature space. Thus, it is optimized directly with the pre-training task and introduces nearly negligible computation. Moreover, we reduce the mutual information of hallucinated pairs and smooth them through non-linear operations. This process helps avoid over-confident contrastive learning models during the training and achieves more transformation-invariant feature embeddings. Remarkably, we empirically prove that the proposed Hallucinator generalizes well to various contrastive learning models, including MoCoV1&V2, SimCLR and SimSiam. Under the linear classification protocol, a stable accuracy gain is achieved, ranging from 0.3% to 3.0% on CIFAR10&100, Tiny ImageNet, STL-10 and ImageNet. The improvement is also observed in transferring pre-train encoders to the downstream tasks, including object detection and segmentation.

Original languageEnglish (US)
Title of host publicationProceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages16086-16097
Number of pages12
ISBN (Electronic)9798350307184
DOIs
StatePublished - 2023
Event2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023 - Paris, France
Duration: Oct 2 2023Oct 6 2023

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
Country/TerritoryFrance
CityParis
Period10/2/2310/6/23

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Hallucination Improves the Performance of Unsupervised Visual Representation Learning'. Together they form a unique fingerprint.

Cite this