Abstract
Recent numerical simulations in general relativistic magnetohydrodynamics (GRMHD) provide useful constraints for the interpretation of the GW170817 discovery. Combining the observed data with these simulations leads to a bound on the maximum mass of a cold, spherical neutron star (the TOV limit): Mmaxsph≲2.74/β, where β is the ratio of the maximum mass of a uniformly rotating neutron star (the supramassive limit) over the maximum mass of a nonrotating star. Causality arguments allow β to be as high as 1.27, while most realistic candidate equations of state predict β to be closer to 1.2, yielding Mmaxsph in the range 2.16-2.28M⊙. A minimal set of assumptions based on these simulations distinguishes this analysis from previous ones, but leads a to similar estimate. There are caveats, however, and they are enumerated and discussed. The caveats can be removed by further simulations and analysis to firm up the basic argument.
Original language | English (US) |
---|---|
Article number | 021501 |
Journal | Physical Review D |
Volume | 97 |
Issue number | 2 |
DOIs | |
State | Published - Jan 11 2018 |
ASJC Scopus subject areas
- Physics and Astronomy (miscellaneous)
Fingerprint
Dive into the research topics of 'GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass. / Ruiz, Milton; Shapiro, Stuart L.; Tsokaros, Antonios.
In: Physical Review D, Vol. 97, No. 2, 021501, 11.01.2018.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass
AU - Ruiz, Milton
AU - Shapiro, Stuart L.
AU - Tsokaros, Antonios
N1 - Funding Information: It is a pleasure to thank G. Baym, C. Gammie, F. Lamb, V. Paschalidis, E. Zhou and K. Uryū for useful discussions. We also thank the Illinois Relativity group REU team, E. Connelly, J. Simone, I. Sultan and J. Zhu for assistance in creating Fig. 1 . This work has been supported in part by National Science Foundation (NSF) Grants No. PHY-1602536 and No. PHY-1662211, and NASA Grants No. NNX13AH44G and No. 80NSSC17K0070 at the University of Illinois at Urbana-Champaign. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF Grant No. OCI-1053575. This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (Award No. OCI 07-25070) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. [1] 1 B. P. Abbott ( Virgo, LIGO Scientific Collaborations ) , Phys. Rev. Lett. 119 , 161101 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.119.161101 [2] 2 H. Yang , W. E. East , and L. Lehner , arXiv:1710.05891 . [3] 3 A. von Kienlin , C. Meegan , and A. Goldstein , GRB Coordinates Network, Circular Service, No. 21520, #1 (2017) 1520 ( 2017 ). [4] 4 A. Kozlova , GRB Coordinates Network, Circular Service, No. 21517, #1 (2017) 1517 ( 2017 ). [5] 5 V. Savchenko , Astrophys. J. 848 , L15 ( 2017 ). ASJOAB 1538-4357 10.3847/2041-8213/aa8f94 [6] 6 V. Savchenko , LIGO/Virgo G298048: INTEGRAL detection of a prompt gamma-ray counterpart, No. 21507 , #1 2017 ( 2017 ). [7] 7 M. Shibata , S. Fujibayashi , K. Hotokezaka , K. Kiuchi , K. Kyutoku , Y. Sekiguchi , and M. Tanaka , arXiv:1710.07579 . [8] 8 N. Fraija , P. Veres , F. De Colle , S. Dichiara , R. B. Duran , W. H. Lee , and A. Galvan-Gamez , arXiv:1710.08514 . [9] 9 B. P. Abbott , Astrophys. J. 848 , L12 ( 2017 ). ASJOAB 1538-4357 10.3847/2041-8213/aa91c9 [10] 10 B. P. Abbott ( Virgo, Fermi-GBM, INTEGRAL, LIGO Scientific Collaborations ) , Astrophys. J. 848 , L13 ( 2017 ). ASJOAB 1538-4357 10.3847/2041-8213/aa920c [11] 11 B. P. Abbott ( Virgo, LIGO Scientific Collaborations ) , arXiv:1710.05836 . [12] GW170817 is also consistent with the coalescence of a binary hybrid hadron-quark star-neutron star [13] . [13] 13 V. Paschalidis , K. Yagi , D. Alvarez-Castillo , D. B. Blaschke , and A. Sedrakian , arXiv:1712.00451 [ Phys. Rev. Lett. (to be published)]. [14] 14 J. Antoniadis , Science 340 , 1233232 ( 2013 ). SCIEAS 0036-8075 10.1126/science.1233232 [15] 15 P. B. Demorest , T. Pennucci , S. M. Ransom , M. S. E. Roberts , and J. W. T. Hessels , Nature (London) 467 , 1081 ( 2010 ). NATUAS 0028-0836 10.1038/nature09466 [16] 16 J. B. Hartle , Phys. Rep. 46 , 201 ( 1978 ). PRPLCM 0370-1573 10.1016/0370-1573(78)90140-0 [17] 17 C. E. Rhoades and R. Ruffini , Phys. Rev. Lett. 32 , 324 ( 1974 ). PRLTAO 0031-9007 10.1103/PhysRevLett.32.324 [18] Although the radius of the star is controlled by the low density part of the EOS the maximum mass that can be supported is controlled by the high density region [19] . [19] 19 J. M. Lattimer and M. Prakash , Phys. Rep. 621 , 127 ( 2016 ). PRPLCM 0370-1573 10.1016/j.physrep.2015.12.005 [20] 20 J. B. Hartle and A. G. Sabbadini , Astrophys. J. 213 , 831 ( 1977 ). ASJOAB 1538-4357 10.1086/155214 [21] 21 V. Kalogera and G. Baym , Astrophys. J. Lett. 470 , L61 ( 1996 ). AJLEEY 2041-8213 10.1086/310296 [22] 22 G. Baym , T. Hatsuda , T. Kojo , P. D. Powell , Y. Song , and T. Takatsuka , arXiv:1707.04966 . [23] 23 J. S. Read , B. D. Lackey , B. J. Owen , and J. L. Friedman , Phys. Rev. D 79 , 124032 ( 2009 ). PRVDAQ 1550-7998 10.1103/PhysRevD.79.124032 [24] 24 S. Lawrence , J. G. Tervala , P. F. Bedaque , and M. C. Miller , Astrophys. J. 808 , 186 ( 2015 ). ASJOAB 1538-4357 10.1088/0004-637X/808/2/186 [25] 25 C. L. Fryer , K. Belczynski , E. Ramirez-Ruiz , S. Rosswog , G. Shen , and A. W. Steiner , Astrophys. J. 812 , 24 ( 2015 ). ASJOAB 1538-4357 10.1088/0004-637X/812/1/24 [26] 26 B. Margalit and B. Metzger , Astrophys. J. 850 , L19 ( 2017 ). ASJOAB 1538-4357 10.3847/2041-8213/aa991c [27] 27 T. W. Baumgarte , S. L. Shapiro , and M. Shibata , Astrophys. J. Lett. 528 , L29 ( 2000 ). AJLEEY 2041-8213 10.1086/312425 [28] 28 M. Shibata , S. Fujibayashi , K. Hotokezaka , K. Kiuchi , K. Kyutoku , Y. Sekiguchi , and M. Tanaka , Phys. Rev. D 96 , 123012 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.96.123012 [29] 29 S. I. Blinnikov , I. D. Novikov , T. V. Perevodchikova , and A. G. Polnarev , Sov. Astron. Lett. 10 , 177 ( 1984 ). [30] 30 D. Eichler , M. Livio , T. Piran , and D. N. Schramm , Nature (London) 340 , 126 ( 1989 ). NATUAS 0028-0836 10.1038/340126a0 [31] 31 R. Narayan , B. Paczynski , and T. Piran , Astrophys. J. Lett. 395 , L83 ( 1992 ). AJLEEY 2041-8213 10.1086/186493 [32] 32 B. Paczynski , Astrophys. J., Lett. Ed. 308 , L43 ( 1986 ). AJLEAU 0571-7248 10.1086/184740 [33] 33 T. Piran , in General Relativity and Gravitation , edited by N. T. Bishop and D. M. Sunil ( World Scientific , Singapore 2002 ) p. 259–275 . [34] 34 E. Berger , Nature (London) 438 , 988 ( 2005 ). NATUAS 0028-0836 10.1038/nature04238 [35] 35 D. Fox , Nature (London) 437 , 845 ( 2005 ). NATUAS 0028-0836 10.1038/nature04189 [36] 36 J. Hjorth , Nature (London) 437 , 859 ( 2005 ). NATUAS 0028-0836 10.1038/nature04174 [37] 37 J. S. Bloom , Astrophys. J. 638 , 354 ( 2006 ). ASJOAB 1538-4357 10.1086/498107 [38] 38 L. Baiotti and L. Rezzolla , Rep. Prog. Phys. 80 , 096901 ( 2017 ). RPPHAG 0034-4885 10.1088/1361-6633/aa67bb [39] 39 V. Paschalidis , Classical Quantum Gravity 34 , 084002 ( 2017 ). CQGRDG 0264-9381 10.1088/1361-6382/aa61ce [40] 40 N. R. Tanvir , A. J. Levan , A. S. Fruchter , J. Hjorth , R. A. Hounsell , K. Wiersema , and R. L. Tunnicliffe , Nature (London) 500 , 547 ( 2013 ). NATUAS 0028-0836 10.1038/nature12505 [41] 41 E. Berger , W. Fong , and R. Chornock , Astrophys. J. 774 , L23 ( 2013 ). ASJOAB 1538-4357 10.1088/2041-8205/774/2/L23 [42] 42 M. D. Duez , Y. T. Liu , S. L. Shapiro , and B. C. Stephens , Phys. Rev. D 69 , 104030 ( 2004 ). PRVDAQ 0556-2821 10.1103/PhysRevD.69.104030 [43] 43 T. Baumgarte and S. Shapiro , Numerical Relativity: Solving Einsteins Equations on the Computer ( Cambridge University Press , Cambridge, England, 2010 ). [44] 44 L. Rezzolla and O. Zanotti , Relativistic Hydrodynamics ( Oxford University Press , New York, 2013 ), ISBN-10: 0198528906 ; ISBN-13: 978-0198528906 . [45] 45 G. B. Cook , S. L. Shapiro , and S. A. Teukolsky , Astrophys. J. 398 , 203 ( 1992 ). ASJOAB 1538-4357 10.1086/171849 [46] 46 M. Ruiz , C. Palenzuela , F. Galeazzi , and C. Bona , Mon. Not. R. Astron. Soc. 423 , 1300 ( 2012 ). MNRAA4 0035-8711 10.1111/j.1365-2966.2012.20950.x [47] 47 J. L. Friedman , J. R. Ipser , and R. D. Sorkin , Astrophys. J. 325 , 722 ( 1988 ). ASJOAB 1538-4357 10.1086/166043 [48] 48 K. Takami , L. Rezzolla , and S. Yoshida , Mon. Not. R. Astron. Soc. 416 , L1 ( 2011 ). MNRAA4 0035-8711 10.1111/j.1745-3933.2011.01085.x [49] 49 S. L. Shapiro and S. A. Teukolsky , Black Holes, White Dwarfs, and Neutron Stars ( John Wiley & Sons , New York, 1983 ). [50] 50 M. M. Kasliwal , Science 358 , 1559 ( 2017 ). SCIEAS 0036-8075 10.1126/science.aap9455 [51] 51 M. Ruiz , R. N. Lang , V. Paschalidis , and S. L. Shapiro , Astrophys. J. 824 , L6 ( 2016 ). ASJOAB 1538-4357 10.3847/2041-8205/824/1/L6 [52] 52 M. Shibata , K. Taniguchi , and K. Uryū , Phys. Rev. D 68 , 084020 ( 2003 ). PRVDAQ 0556-2821 10.1103/PhysRevD.68.084020 [53] 53 M. Ruiz , P. Vasileios , A. Tsokaros , and S. L. Shapiro (to be published). [54] 54 B. D. Metzger , E. Quataert , and T. A. Thompson , Mon. Not. R. Astron. Soc. 385 , 1455 ( 2008 ). MNRAA4 0035-8711 10.1111/j.1365-2966.2008.12923.x [55] 55 A. Rowlinson , P. T. O’Brien , B. D. Metzger , N. R. Tanvir , and A. J. Levan , Mon. Not. R. Astron. Soc. 430 , 1061 ( 2013 ). MNRAA4 0035-8711 10.1093/mnras/sts683 [56] 56 S. S. Komissarov , Mon. Not. R. Astron. Soc. 350 , 407 ( 2004 ). MNRAA4 0035-8711 10.1111/j.1365-2966.2004.07446.x [57] 57 B. F. Schutz and N. Comins , Mon. Not. R. Astron. Soc. 182 , 69 ( 1978 ). MNRAA4 0035-8711 10.1093/mnras/182.1.69 [58] 58 J. L. Friedman , Commun. Math. Phys. 63 , 243 ( 1978 ). CMPHAY 0010-3616 10.1007/BF01196933 [59] 59 M. Ruiz and S. L. Shapiro , Phys. Rev. D 96 , 084063 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.96.084063 [60] 60 W. H. Lee and E. Ramirez-Ruiz , New J. Phys. 9 , 17 ( 2007 ). NJOPFM 1367-2630 10.1088/1367-2630/9/1/017 [61] 61 P. Meszaros , Rep. Prog. Phys. 69 , 2259 ( 2006 ). RPPHAG 0034-4885 10.1088/0034-4885/69/8/R01 [62] 62 R. Mochkovitch , M. Hernanz , J. Isern , and X. Martin , Nature (London) 361 , 236 ( 1993 ). NATUAS 0028-0836 10.1038/361236a0 [63] 63 E. Nakar , Phys. Rep. 442 , 166 ( 2007 ). PRPLCM 0370-1573 10.1016/j.physrep.2007.02.005 [64] 64 V. Paschalidis , M. Ruiz , and S. L. Shapiro , Astrophys. J. Lett. 806 , L14 ( 2015 ). AJLEEY 2041-8213 10.1088/2041-8205/806/1/L14 [65] 65 R. D. Blandford and R. L. Znajek , Mon. Not. R. Astron. Soc. 179 , 433 ( 1977 ). MNRAA4 0035-8711 10.1093/mnras/179.3.433 [66] 66 O. Just , M. Obergaulinger , H. T. Janka , A. Bauswein , and N. Schwarz , Astrophys. J. 816 , L30 ( 2016 ). ASJOAB 1538-4357 10.3847/2041-8205/816/2/L30 [67] 67 A. Perego , H. Yasin , and A. Arcones , J. Phys. G 44 , 084007 ( 2017 ). JPGPED 0954-3899 10.1088/1361-6471/aa7bdc [68] 68 J. C. McKinney , Mon. Not. R. Astron. Soc. 367 , 1797 ( 2006 ). MNRAA4 0035-8711 10.1111/j.1365-2966.2006.10087.x [69] 69 J. C. McKinney and C. F. Gammie , Astrophys. J. 611 , 977 ( 2004 ). ASJOAB 1538-4357 10.1086/422244 [70] 70 J.-P. De Villiers , J. F. Hawley , and J. H. Krolik , Astrophys. J. 599 , 1238 ( 2003 ). ASJOAB 1538-4357 10.1086/379509 [71] 71 K. Beckwith , J. F. Hawley , and J. H. Krolik , Astrophys. J. 678 , 1180 ( 2008 ). ASJOAB 1538-4357 10.1086/533492 [72] 72 J. F. Hawley , S. A. Balbus , and J. M. Stone , Astrophys. J. Lett. 554 , L49 ( 2001 ). AJLEEY 2041-8213 10.1086/320931 [73] 73 D. A. Kann , Astrophys. J. 734 , 96 ( 2011 ). ASJOAB 1538-4357 10.1088/0004-637X/734/2/96 [74] 74 S. L. Shapiro , Phys. Rev. D 95 , 101303 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.95.101303 [75] 75 K. Hotokezaka , K. Kiuchi , K. Kyutoku , H. Okawa , Y.-i. Sekiguchi , M. Shibata , and K. Taniguchi , Phys. Rev. D 87 , 024001 ( 2013 ). PRVDAQ 1550-7998 10.1103/PhysRevD.87.024001 [76] 76 C. Palenzuela , S. L. Liebling , D. Neilsen , L. Lehner , O. L. Caballero , E. O’Connor , and M. Anderson , Phys. Rev. D 92 , 044045 ( 2015 ). PRVDAQ 1550-7998 10.1103/PhysRevD.92.044045 [77] 77 R. Ciolfi , W. Kastaun , B. Giacomazzo , A. Endrizzi , D. M. Siegel , and R. Perna , Phys. Rev. D 95 , 063016 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.95.063016 [78] 78 Y. Sekiguchi , K. Kiuchi , K. Kyutoku , and M. Shibata , Phys. Rev. D 91 , 064059 ( 2015 ). PRVDAQ 1550-7998 10.1103/PhysRevD.91.064059 [79] 79 F. Foucart , E. O’Connor , L. Roberts , L. E. Kidder , H. P. Pfeiffer , and M. A. Scheel , Phys. Rev. D 94 , 123016 ( 2016 ). PRVDAQ 2470-0010 10.1103/PhysRevD.94.123016 [80] 80 L. Lehner , S. L. Liebling , C. Palenzuela , O. L. Caballero , E. O’Connor , M. Anderson , and D. Neilsen , Classical Quantum Gravity 33 , 184002 ( 2016 ). CQGRDG 0264-9381 10.1088/0264-9381/33/18/184002 [81] 81 M. Shibata , Phys. Rev. Lett. 94 , 201101 ( 2005 ). PRLTAO 0031-9007 10.1103/PhysRevLett.94.201101 [82] 82 M. Shibata and K. Taniguchi , Phys. Rev. D 73 , 064027 ( 2006 ). PRVDAQ 1550-7998 10.1103/PhysRevD.73.064027 [83] 83 L. Baiotti , B. Giacomazzo , and L. Rezzolla , Phys. Rev. D 78 , 084033 ( 2008 ). PRVDAQ 1550-7998 10.1103/PhysRevD.78.084033 [84] 84 K. Hotokezaka , K. Kyutoku , H. Okawa , M. Shibata , and K. Kiuchi , Phys. Rev. D 83 , 124008 ( 2011 ). PRVDAQ 1550-7998 10.1103/PhysRevD.83.124008 [85] 85 A. Bauswein , T. W. Baumgarte , and H. T. Janka , Phys. Rev. Lett. 111 , 131101 ( 2013 ). PRLTAO 0031-9007 10.1103/PhysRevLett.111.131101 [86] 86 G. B. Cook , S. L. Shapiro , and S. A. Teukolsky , Astrophys. J. 422 , 227 ( 1994 ). ASJOAB 1538-4357 10.1086/173721 [87] 87 G. B. Cook , S. L. Shapiro , and S. A. Teukolsky , Astrophys. J. 424 , 823 ( 1994 ). ASJOAB 1538-4357 10.1086/173934 [88] 88 C. Breu and L. Rezzolla , Mon. Not. R. Astron. Soc. 459 , 646 ( 2016 ). MNRAA4 0035-8711 10.1093/mnras/stw575 [89] 89 J. L. Friedman and J. R. Ipser , Astrophys. J. 314 , 594 ( 1987 ). ASJOAB 1538-4357 10.1086/165088 [90] 90 S. Koranda , N. Stergioulas , and J. L. Friedman , Astrophys. J. 488 , 799 ( 1997 ). ASJOAB 1538-4357 10.1086/304714 [91] 91 J.-P. Lasota , P. Haensel , and M. A. Abramowicz , Astrophys. J. 456 , 300 ( 1996 ). ASJOAB 1538-4357 10.1086/176650 [92] 92 D. A. Brown , I. Harry , A. Lundgren , and A. H. Nitz , Phys. Rev. D 86 , 084017 ( 2012 ). PRVDAQ 1550-7998 10.1103/PhysRevD.86.084017 Publisher Copyright: © 2018 American Physical Society.
PY - 2018/1/11
Y1 - 2018/1/11
N2 - Recent numerical simulations in general relativistic magnetohydrodynamics (GRMHD) provide useful constraints for the interpretation of the GW170817 discovery. Combining the observed data with these simulations leads to a bound on the maximum mass of a cold, spherical neutron star (the TOV limit): Mmaxsph≲2.74/β, where β is the ratio of the maximum mass of a uniformly rotating neutron star (the supramassive limit) over the maximum mass of a nonrotating star. Causality arguments allow β to be as high as 1.27, while most realistic candidate equations of state predict β to be closer to 1.2, yielding Mmaxsph in the range 2.16-2.28M⊙. A minimal set of assumptions based on these simulations distinguishes this analysis from previous ones, but leads a to similar estimate. There are caveats, however, and they are enumerated and discussed. The caveats can be removed by further simulations and analysis to firm up the basic argument.
AB - Recent numerical simulations in general relativistic magnetohydrodynamics (GRMHD) provide useful constraints for the interpretation of the GW170817 discovery. Combining the observed data with these simulations leads to a bound on the maximum mass of a cold, spherical neutron star (the TOV limit): Mmaxsph≲2.74/β, where β is the ratio of the maximum mass of a uniformly rotating neutron star (the supramassive limit) over the maximum mass of a nonrotating star. Causality arguments allow β to be as high as 1.27, while most realistic candidate equations of state predict β to be closer to 1.2, yielding Mmaxsph in the range 2.16-2.28M⊙. A minimal set of assumptions based on these simulations distinguishes this analysis from previous ones, but leads a to similar estimate. There are caveats, however, and they are enumerated and discussed. The caveats can be removed by further simulations and analysis to firm up the basic argument.
UR - http://www.scopus.com/inward/record.url?scp=85042026813&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85042026813&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.97.021501
DO - 10.1103/PhysRevD.97.021501
M3 - Article
C2 - 30003183
AN - SCOPUS:85042026813
VL - 97
JO - Physical Review D
JF - Physical Review D
SN - 2470-0010
IS - 2
M1 - 021501
ER -