Guiding medical needles using single-point tissue manipulation

Meysam Torabi, Kris Hauser, Ron Alterovitz, Vincent Duindam, Ken Goldberg

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper addresses the use of robotic tissue manipulation in medical needle insertion procedures to improve targeting accuracy and to help avoid damaging sensitive tissues. To control these multiple, potentially competing objectives, we present a phased controller that operates one manipulator at a time using closed-loop imaging feedback. We present an automated procedure planning technique that uses tissue geometry to select the needle insertion location, manipulation locations, and controller parameters. The planner uses a stochastic optimization of a cost function that includes tissue stress and robustness to disturbances. We demonstrate the system on 2D tissues simulated with a mass-spring model, including a simulation of a prostate brachytherapy procedure. It can reduce targeting errors from more than 2cm to less than 1mm, and can also shift obstacles by over 1cm to clear them away from the needle path.

Original languageEnglish (US)
Title of host publication2009 IEEE International Conference on Robotics and Automation, ICRA '09
Pages2705-2710
Number of pages6
DOIs
StatePublished - 2009
Externally publishedYes
Event2009 IEEE International Conference on Robotics and Automation, ICRA '09 - Kobe, Japan
Duration: May 12 2009May 17 2009

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Other

Other2009 IEEE International Conference on Robotics and Automation, ICRA '09
Country/TerritoryJapan
CityKobe
Period5/12/095/17/09

ASJC Scopus subject areas

  • Software
  • Artificial Intelligence
  • Electrical and Electronic Engineering
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Guiding medical needles using single-point tissue manipulation'. Together they form a unique fingerprint.

Cite this