TY - GEN
T1 - Guided entry performance of low ballistic coefficient vehicles at Mars
AU - Meginnis, Ian
AU - Putnam, Zachary
AU - Clark, Ian
AU - Braun, Robert
AU - Barton, Gregg
PY - 2012
Y1 - 2012
N2 - Current Mars entry, descent, and landing technology is near its performance limit and is unable to land payloads on the surface that exceed approximately 1 metric ton. One option for increasing landed payload mass capability is decreasing the entry vehicle's hypersonic ballistic coefficient. A lower ballistic coefficient vehicle decelerates higher in the atmosphere, providing additional timeline and altitude margin necessary for heavier payloads. This study analyzed the guided entry performance of concept low ballistic coefficient vehicles at Mars. A terminal point controller guidance algorithm was used to provide precision targeting capability. Accuracy at parachute deploy, peak deceleration, peak heat rate, and integrated heat load were assessed and compared to a traditional vehicle to determine the effects of lowering the vehicle ballistic coefficient on entry performance. Results from this study suggest that while accuracy at parachute deploy degrades with decreasing ballistic coefficient, accuracy and other performance metrics remain within reasonable bounds for ballistic coefficients as low as 1 kg/m 2. As such, this investigation demonstrates that from a performance standpoint, guided entry vehicles with large diameters may be feasible at Mars.
AB - Current Mars entry, descent, and landing technology is near its performance limit and is unable to land payloads on the surface that exceed approximately 1 metric ton. One option for increasing landed payload mass capability is decreasing the entry vehicle's hypersonic ballistic coefficient. A lower ballistic coefficient vehicle decelerates higher in the atmosphere, providing additional timeline and altitude margin necessary for heavier payloads. This study analyzed the guided entry performance of concept low ballistic coefficient vehicles at Mars. A terminal point controller guidance algorithm was used to provide precision targeting capability. Accuracy at parachute deploy, peak deceleration, peak heat rate, and integrated heat load were assessed and compared to a traditional vehicle to determine the effects of lowering the vehicle ballistic coefficient on entry performance. Results from this study suggest that while accuracy at parachute deploy degrades with decreasing ballistic coefficient, accuracy and other performance metrics remain within reasonable bounds for ballistic coefficients as low as 1 kg/m 2. As such, this investigation demonstrates that from a performance standpoint, guided entry vehicles with large diameters may be feasible at Mars.
UR - http://www.scopus.com/inward/record.url?scp=84861163336&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84861163336&partnerID=8YFLogxK
U2 - 10.1109/AERO.2012.6187001
DO - 10.1109/AERO.2012.6187001
M3 - Conference contribution
AN - SCOPUS:84861163336
SN - 9781457705564
T3 - IEEE Aerospace Conference Proceedings
BT - 2012 IEEE Aerospace Conference
T2 - 2012 IEEE Aerospace Conference
Y2 - 3 March 2012 through 10 March 2012
ER -