TY - JOUR
T1 - Growing optimal scale-free networks via likelihood
AU - Small, Michael
AU - Li, Yingying
AU - Stemler, Thomas
AU - Judd, Kevin
N1 - Publisher Copyright:
© 2015 American Physical Society.
PY - 2015/4/7
Y1 - 2015/4/7
N2 - Preferential attachment, by which new nodes attach to existing nodes with probability proportional to the existing nodes' degree, has become the standard growth model for scale-free networks, where the asymptotic probability of a node having degree k is proportional to k-γ. However, the motivation for this model is entirely ad hoc. We use exact likelihood arguments and show that the optimal way to build a scale-free network is to attach most new links to nodes of low degree. Curiously, this leads to a scale-free network with a single dominant hub: a starlike structure we call a superstar network. Asymptotically, the optimal strategy is to attach each new node to one of the nodes of degree k with probability proportional to 1N+ζ(γ)(k+1)γ (in a N node network): a stronger bias toward high degree nodes than exhibited by standard preferential attachment. Our algorithm generates optimally scale-free networks (the superstar networks) as well as randomly sampling the space of all scale-free networks with a given degree exponent γ. We generate viable realization with finite N for 1 γ<2 as well as γ>2. We observe an apparently discontinuous transition at γ≈2 between so-called superstar networks and more treelike realizations. Gradually increasing γ further leads to reemergence of a superstar hub. To quantify these structural features, we derive a new analytic expression for the expected degree exponent of a pure preferential attachment process and introduce alternative measures of network entropy. Our approach is generic and can also be applied to an arbitrary degree distribution.
AB - Preferential attachment, by which new nodes attach to existing nodes with probability proportional to the existing nodes' degree, has become the standard growth model for scale-free networks, where the asymptotic probability of a node having degree k is proportional to k-γ. However, the motivation for this model is entirely ad hoc. We use exact likelihood arguments and show that the optimal way to build a scale-free network is to attach most new links to nodes of low degree. Curiously, this leads to a scale-free network with a single dominant hub: a starlike structure we call a superstar network. Asymptotically, the optimal strategy is to attach each new node to one of the nodes of degree k with probability proportional to 1N+ζ(γ)(k+1)γ (in a N node network): a stronger bias toward high degree nodes than exhibited by standard preferential attachment. Our algorithm generates optimally scale-free networks (the superstar networks) as well as randomly sampling the space of all scale-free networks with a given degree exponent γ. We generate viable realization with finite N for 1 γ<2 as well as γ>2. We observe an apparently discontinuous transition at γ≈2 between so-called superstar networks and more treelike realizations. Gradually increasing γ further leads to reemergence of a superstar hub. To quantify these structural features, we derive a new analytic expression for the expected degree exponent of a pure preferential attachment process and introduce alternative measures of network entropy. Our approach is generic and can also be applied to an arbitrary degree distribution.
UR - http://www.scopus.com/inward/record.url?scp=84929072056&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84929072056&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.91.042801
DO - 10.1103/PhysRevE.91.042801
M3 - Article
AN - SCOPUS:84929072056
SN - 1539-3755
VL - 91
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
IS - 4
M1 - 042801
ER -