Growing attributed networks through local processes

Harshay Shah, Suhansanu Kumar, Hari Sundaram

Research output: Chapter in Book/Report/Conference proceedingConference contribution


This paper proposes an attributed network growth model. Despite the knowledge that individuals use limited resources to form connections to similar others, we lack an understanding of how local and resource-constrained mechanisms explain the emergence of structural properties found in real-world networks. We make three contributions. First, we propose a simple and accurate model of attributed network growth that jointly explains the emergence of in-degree, local clustering, clustering-degree relationship and attribute mixing patterns. Second, we make use of biased random walks to develop a model that forms edges locally, without recourse to global information. Third, we account for multiple sociological phenomena: bounded rationality; structural constraints; triadic closure; attribute homophily; preferential attachment. Our experiments show that the proposed Attributed Random Walk (ARW) model accurately preserves network structure and attribute mixing patterns of real-world networks; it improves upon the performance of eight well-known models by a significant margin of 2.5-10×.

Original languageEnglish (US)
Title of host publicationThe Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019
PublisherAssociation for Computing Machinery
Number of pages7
ISBN (Electronic)9781450366748
StatePublished - May 13 2019
Event2019 World Wide Web Conference, WWW 2019 - San Francisco, United States
Duration: May 13 2019May 17 2019

Publication series

NameThe Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019


Conference2019 World Wide Web Conference, WWW 2019
Country/TerritoryUnited States
CitySan Francisco


  • Attributed networks
  • Network Structure
  • Network growth

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Software


Dive into the research topics of 'Growing attributed networks through local processes'. Together they form a unique fingerprint.

Cite this