Green microfluidic devices made of corn proteins

Jarupat Luecha, Austin Hsiao, Serena Brodsky, Gang Logan Liu, Jozef L. Kokini

Research output: Contribution to journalArticlepeer-review

Abstract

An alternative green microfluidic device made of zein, a prolamin of corn, can be utilized as a disposable environmentally friendly microchip especially in agriculture applications. Using standard soft lithography and stereo lithography techniques, we fabricated thin zein films with microfluidic chambers and channels. These were bonded to both a glass slide and another zein film. The zein film with microfluidic features bonds irreversibly with other surfaces by vapor-deposition of ethanol to create an adhesive layer resulting in very little or no trapped air and small shape distortion. Zein-zein and zein-glass microfluidic devices demonstrated sufficient strength to facilitate fluid flow in a complex microfluidic design that showed no leakage under high hydraulic pressure. Zein-glass microfluidic devices with serpentine mixing design showed successful fluid manipulation as a concentration gradient of Rhodamine B solution was generated. The ease of fabrication and bonding and the flexibility and moldability of zein offer attractive possibilities for microfluidic device design and manufacturing. These devices can include several unit operations with mixing being one of the most commonly used. The zein-based microfluidic devices, made entirely from a biopolymer from agricultural origin, offer alternative environmentally friendly material choices that are less dependent on limited petroleum based polymer resources. This journal is

Original languageEnglish (US)
Pages (from-to)3419-3425
Number of pages7
JournalLab on a chip
Volume11
Issue number20
DOIs
StatePublished - Oct 21 2011
Externally publishedYes

ASJC Scopus subject areas

  • Bioengineering
  • Biochemistry
  • General Chemistry
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Green microfluidic devices made of corn proteins'. Together they form a unique fingerprint.

Cite this