Graph Neural Bandits

Yunzhe Qi, Yikun Ban, Jingrui He

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Contextual bandits algorithms aim to choose the optimal arm with the highest reward out of a set of candidates based on the contextual information. Various bandit algorithms have been applied to real-world applications due to their ability of tackling the exploitation-exploration dilemma. Motivated by online recommendation scenarios, in this paper, we propose a framework named Graph Neural Bandits (GNB) to leverage the collaborative nature among users empowered by graph neural networks (GNNs). Instead of estimating rigid user clusters as in existing works, we model the "fine-grained"collaborative effects through estimated user graphs in terms of exploitation and exploration respectively. Then, to refine the recommendation strategy, we utilize separate GNN-based models on estimated user graphs for exploitation and adaptive exploration. Theoretical analysis and experimental results on multiple real data sets in comparison with state-of-the-art baselines are provided to demonstrate the effectiveness of our proposed framework.

Original languageEnglish (US)
Title of host publicationKDD 2023 - Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Number of pages12
ISBN (Electronic)9798400701030
StatePublished - Aug 6 2023
Event29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023 - Long Beach, United States
Duration: Aug 6 2023Aug 10 2023

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining


Conference29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023
Country/TerritoryUnited States
CityLong Beach


  • contextual bandits
  • graph neural networks
  • user modeling

ASJC Scopus subject areas

  • Software
  • Information Systems


Dive into the research topics of 'Graph Neural Bandits'. Together they form a unique fingerprint.

Cite this