Graph Communal Contrastive Learning

Bolian Li, Baoyu Jing, Hanghang Tong

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Graph representation learning is crucial for many real-world applications (e.g. social relation analysis). A fundamental problem for graph representation learning is how to effectively learn representations without human labeling, which is usually costly and time-consuming. Graph contrastive learning (GCL) addresses this problem by pulling the positive node pairs (or similar nodes) closer while pushing the negative node pairs (or dissimilar nodes) apart in the representation space. Despite the success of the existing GCL methods, they primarily sample node pairs based on the node-level proximity yet the community structures have rarely been taken into consideration. As a result, two nodes from the same community might be sampled as a negative pair. We argue that the community information should be considered to identify node pairs in the same communities, where the nodes insides are semantically similar. To address this issue, we propose a novel Graph Communal Contrastive Learning (gCooL) framework to jointly learn the community partition and learn node representations in an end-to-end fashion. Specifically, the proposed gCooL consists of two components: a Dense Community Aggregation (DeCA) algorithm for community detection and a Reweighted Self-supervised Cross-contrastive (ReSC) training scheme to utilize the community information. Additionally, the real-world graphs are complex and often consist of multiple views. In this paper, we demonstrate that the proposed gCooL can also be naturally adapted to multiplex graphs. Finally, we comprehensively evaluate the proposed gCooL on a variety of real-world graphs. The experimental results show that the gCooL outperforms the state-of-the-art methods.

Original languageEnglish (US)
Title of host publicationWWW 2022 - Proceedings of the ACM Web Conference 2022
PublisherAssociation for Computing Machinery
Pages1203-1213
Number of pages11
ISBN (Electronic)9781450390965
DOIs
StatePublished - Apr 25 2022
Event31st ACM World Wide Web Conference, WWW 2022 - Virtual, Online, France
Duration: Apr 25 2022Apr 29 2022

Publication series

NameWWW 2022 - Proceedings of the ACM Web Conference 2022

Conference

Conference31st ACM World Wide Web Conference, WWW 2022
Country/TerritoryFrance
CityVirtual, Online
Period4/25/224/29/22

Keywords

  • community detection
  • graph contrastive learning
  • self-supervised learning

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Software

Fingerprint

Dive into the research topics of 'Graph Communal Contrastive Learning'. Together they form a unique fingerprint.

Cite this