TY - GEN
T1 - Graph-based consensus maximization among multiple supervised and unsupervised models
AU - Gao, Jing
AU - Liang, Feng
AU - Fan, Wei
AU - Sun, Yizhou
AU - Han, Jiawei
PY - 2009
Y1 - 2009
N2 - Ensemble classifiers such as bagging, boosting and model averaging are known to have improved accuracy and robustness over a single model. Their potential, however, is limited in applications which have no access to raw data but to the meta-level model output. In this paper, we study ensemble learning with output from multiple supervised and unsupervised models, a topic where little work has been done. Although unsupervised models, such as clustering, do not directly generate label prediction for each individual, they provide useful constraints for the joint prediction of a set of related objects. We propose to consolidate a classification solution by maximizing the consensus among both supervised predictions and unsupervised constraints. We cast this ensemble task as an optimization problem on a bipartite graph, where the objective function favors the smoothness of the prediction over the graph, as well as penalizing deviations from the initial labeling provided by supervised models. We solve this problem through iterative propagation of probability estimates among neighboring nodes. Our method can also be interpreted as conducting a constrained embedding in a transformed space, or a ranking on the graph. Experimental results on three real applications demonstrate the benefits of the proposed method over existing alternatives1.
AB - Ensemble classifiers such as bagging, boosting and model averaging are known to have improved accuracy and robustness over a single model. Their potential, however, is limited in applications which have no access to raw data but to the meta-level model output. In this paper, we study ensemble learning with output from multiple supervised and unsupervised models, a topic where little work has been done. Although unsupervised models, such as clustering, do not directly generate label prediction for each individual, they provide useful constraints for the joint prediction of a set of related objects. We propose to consolidate a classification solution by maximizing the consensus among both supervised predictions and unsupervised constraints. We cast this ensemble task as an optimization problem on a bipartite graph, where the objective function favors the smoothness of the prediction over the graph, as well as penalizing deviations from the initial labeling provided by supervised models. We solve this problem through iterative propagation of probability estimates among neighboring nodes. Our method can also be interpreted as conducting a constrained embedding in a transformed space, or a ranking on the graph. Experimental results on three real applications demonstrate the benefits of the proposed method over existing alternatives1.
UR - http://www.scopus.com/inward/record.url?scp=84863338443&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863338443&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84863338443
SN - 9781615679119
T3 - Advances in Neural Information Processing Systems 22 - Proceedings of the 2009 Conference
SP - 585
EP - 593
BT - Advances in Neural Information Processing Systems 22 - Proceedings of the 2009 Conference
PB - Neural Information Processing Systems
T2 - 23rd Annual Conference on Neural Information Processing Systems, NIPS 2009
Y2 - 7 December 2009 through 10 December 2009
ER -