GPS Signal Authentication from Cooperative Peers

Liang Heng, Daniel B. Work, Grace Xingxin Gao

Research output: Contribution to journalArticlepeer-review


Secure reliable position information is indispensable for many transportation systems and services, such as traffic monitoring, fleet management, electronic toll collection, route guidance, vehicle telematics, and emergency response. Unfortunately, civil Global Positioning System (GPS) signals are vulnerable to spoofing attacks. This paper introduces a signal authentication architecture based on a network of cooperative GPS receivers. A receiver in the network correlates its received military P(Y) signal with those received by other receivers (hereinafter referred to as cross-check receivers) to detect spoofing attacks. This paper describes three candidate structures to implement this architecture and evaluates spoofing detection performance through theoretical analyses and field experiments. We show that the spoofing detection performance improves exponentially with increasing number of cross-check receivers. Even if the cross-check receivers are low cost, unreliable, and in challenging environment, cooperative authentication can match, if not outperform, a single high-quality reliable reference receiver in terms of spoofing detection performance.

Original languageEnglish (US)
Article number6985623
Pages (from-to)1794-1805
Number of pages12
JournalIEEE Transactions on Intelligent Transportation Systems
Issue number4
StatePublished - Aug 1 2015


  • Authentication
  • Global Positioning System (GPS)
  • cooperative
  • global navigation satellite systems
  • reliability
  • security
  • spoofing detection

ASJC Scopus subject areas

  • Automotive Engineering
  • Mechanical Engineering
  • Computer Science Applications


Dive into the research topics of 'GPS Signal Authentication from Cooperative Peers'. Together they form a unique fingerprint.

Cite this