Global priority-driven aperiodic scheduling on multiprocessors

Björn Andersson, Tarek Abdelzaher, Jan Jonsson

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper studies multiprocessor scheduling for aperiodic tasks where future arrivals are unknown. A previously proposed priority-driven scheduling algorithm for periodic tasks with migration capability is extended to aperiodic scheduling and is shown to have a capacity bound of 0.5. This bound is close to the best achievable for a priority-driven scheduling algorithm. With an infinite number of processors, no priority-driven scheduling algorithm can perform better. We also propose a simple admission controller which guarantees that admitted tasks meet their deadlines and for many workloads, it admits tasks so that the utilization can be kept above the capacity bound.

Original languageEnglish (US)
Title of host publicationProceedings - International Parallel and Distributed Processing Symposium, IPDPS 2003
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)0769519261, 9780769519265
DOIs
StatePublished - Jan 1 2003
Externally publishedYes
EventInternational Parallel and Distributed Processing Symposium, IPDPS 2003 - Nice, France
Duration: Apr 22 2003Apr 26 2003

Publication series

NameProceedings - International Parallel and Distributed Processing Symposium, IPDPS 2003

Other

OtherInternational Parallel and Distributed Processing Symposium, IPDPS 2003
CountryFrance
CityNice
Period4/22/034/26/03

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Theoretical Computer Science
  • Software

Fingerprint Dive into the research topics of 'Global priority-driven aperiodic scheduling on multiprocessors'. Together they form a unique fingerprint.

Cite this