TY - JOUR
T1 - Giant viruses coexisted with the cellular ancestors and represent a distinct supergroup along with superkingdoms Archaea, Bacteria and Eukarya
AU - Nasir, Arshan
AU - Kim, Kyung Mo
AU - Caetano-Anolles, Gustavo
N1 - Funding Information:
We thank Mart Krupovic for help in selecting our viral dataset, Patrick Forterre for valuable comments, and members of the Evolutionary Bioinformatics research team for data, comments and help. Research was supported by the National Science Foundation (MCB-0749836 and OISE-1132791) of the US and by a grant (PJ0090192012) from the Next-Generation BioGreen 21 Program, Rural Development Administration, Republic of Korea. Any opinions, findings, conclusions and recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies.
PY - 2012
Y1 - 2012
N2 - Background: The discovery of giant viruses with genome and physical size comparable to cellular organisms, remnants of protein translation machinery and virus-specific parasites (virophages) have raised intriguing questions about their origin. Evidence advocates for their inclusion into global phylogenomic studies and their consideration as a distinct and ancient form of life. Results: Here we reconstruct phylogenies describing the evolution of proteomes and protein domain structures of cellular organisms and double-stranded DNA viruses with medium-to-very-large proteomes (giant viruses). Trees of proteomes define viruses as a 'fourth supergroup' along with superkingdoms Archaea, Bacteria, and Eukarya. Trees of domains indicate they have evolved via massive and primordial reductive evolutionary processes. The distribution of domain structures suggests giant viruses harbor a significant number of protein domains including those with no cellular representation. The genomic and structural diversity embedded in the viral proteomes is comparable to the cellular proteomes of organisms with parasitic lifestyles. Since viral domains are widespread among cellular species, we propose that viruses mediate gene transfer between cells and crucially enhance biodiversity. Conclusions: Results call for a change in the way viruses are perceived. They likely represent a distinct form of life that either predated or coexisted with the last universal common ancestor (LUCA) and constitute a very crucial part of our planet's biosphere.
AB - Background: The discovery of giant viruses with genome and physical size comparable to cellular organisms, remnants of protein translation machinery and virus-specific parasites (virophages) have raised intriguing questions about their origin. Evidence advocates for their inclusion into global phylogenomic studies and their consideration as a distinct and ancient form of life. Results: Here we reconstruct phylogenies describing the evolution of proteomes and protein domain structures of cellular organisms and double-stranded DNA viruses with medium-to-very-large proteomes (giant viruses). Trees of proteomes define viruses as a 'fourth supergroup' along with superkingdoms Archaea, Bacteria, and Eukarya. Trees of domains indicate they have evolved via massive and primordial reductive evolutionary processes. The distribution of domain structures suggests giant viruses harbor a significant number of protein domains including those with no cellular representation. The genomic and structural diversity embedded in the viral proteomes is comparable to the cellular proteomes of organisms with parasitic lifestyles. Since viral domains are widespread among cellular species, we propose that viruses mediate gene transfer between cells and crucially enhance biodiversity. Conclusions: Results call for a change in the way viruses are perceived. They likely represent a distinct form of life that either predated or coexisted with the last universal common ancestor (LUCA) and constitute a very crucial part of our planet's biosphere.
UR - http://www.scopus.com/inward/record.url?scp=84865305042&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84865305042&partnerID=8YFLogxK
U2 - 10.1186/1471-2148-12-156
DO - 10.1186/1471-2148-12-156
M3 - Article
C2 - 22920653
AN - SCOPUS:84865305042
SN - 1471-2148
VL - 12
JO - BMC Evolutionary Biology
JF - BMC Evolutionary Biology
IS - 1
M1 - 156
ER -