Geometry-aware traffic flow analysis by detection and tracking

Honghui Shi, Zhonghao Wang, Yang Zhang, Xinchao Wang, Thomas Huang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In the second Nvidia AI City Challenge hosted in 2018, the traffic flow analysis challenge proposes an interest task that requires participants to predict the speed of vehicles on road from various traffic camera videos. We propose a simple yet effective method combing both learning based detection and geometric calibration based estimation. We use a learning based method to detect and track vehicles, and use a geometry based camera calibration method to calculate the speed of those vehicles. We achieve a perfect detection rate of target vehicles and a root mean square error (RMSE) of 6.6674 in predicting the vehicle speed, which rank us the third place in the competition.

Original languageEnglish (US)
Title of host publicationProceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2018
PublisherIEEE Computer Society
Pages116-120
Number of pages5
ISBN (Electronic)9781538661000
DOIs
StatePublished - Dec 13 2018
Event31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2018 - Salt Lake City, United States
Duration: Jun 18 2018Jun 22 2018

Publication series

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Volume2018-June
ISSN (Print)2160-7508
ISSN (Electronic)2160-7516

Other

Other31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2018
Country/TerritoryUnited States
CitySalt Lake City
Period6/18/186/22/18

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Geometry-aware traffic flow analysis by detection and tracking'. Together they form a unique fingerprint.

Cite this