TY - JOUR
T1 - Genomic regions associated with host response to porcine reproductive and respiratory syndrome vaccination and co-infection in nursery pigs
AU - Dunkelberger, Jenelle R.
AU - Serão, Nick V.L.
AU - Weng, Ziqing
AU - Waide, Emily H.
AU - Niederwerder, Megan C.
AU - Kerrigan, Maureen A.
AU - Lunney, Joan K.
AU - Rowland, Raymond R.R.
AU - Dekkers, Jack C.M.
N1 - Publisher Copyright:
© 2017 The Author(s).
PY - 2017/11/13
Y1 - 2017/11/13
N2 - Background: The WUR1000125 (WUR) single nucleotide polymorphism (SNP) can be used as a genetic marker for host response to porcine reproductive and respiratory syndrome (PRRS), PRRS vaccination, and co-infection with porcine circovirus type 2b (PCV2b). Objectives of this study were to identify genomic regions other than WUR associated with host response to PRRS vaccination and PRRSV/PCV2b co-infection and regions with a different effect on host response to co-infection, depending on previous vaccination for PRRS. Methods: Commercial crossbred nursery pigs were pre-selected for WUR genotype (n = 171 AA and 198 AB pigs) where B is the dominant and favorable allele. Half of the pigs were vaccinated for PRRS and 4 weeks later, all pigs were co-infected with PRRS virus and PCV2b. Average daily gain (ADG) and viral load (VL) were quantified post vaccination (Post Vx) and post co-infection (Post Co-X). Single-SNP genome-wide association analyses were then conducted to identify genomic regions associated with response to vaccination and co-infection. Results: Multiple SNPs near the major histocompatibility complex were significantly associated with PCV2b VL (-log 10 P ≥ 5.5), regardless of prior vaccination for PRRS. Several SNPs were also significantly associated with ADG Post Vx and Post Co-X. SNPs with a different effect on ADG, depending on prior vaccination for PRRS, were identified Post Vx (-log 10 P = 5.6) and Post Co-X (-log 10 P = 5.5). No SNPs were significantly associated with vaccination VL (-log10 P ≤ 4.7) or PRRS VL (-log10 P ≤ 4.3). Genes near SNPs associated with vaccination VL, PRRS VL, and PCV2b VL were enriched (P ≤ 0.01) for immune-related pathways and genes near SNPs associated with ADG were enriched for metabolism pathways (P ≤ 0.04). SNPs associated with vaccination VL, PRRS VL, and PCV2b VL showed overrepresentation of health QTL identified in previous studies and SNPs associated with ADG Post Vx of Non-Vx pigs showed overrepresentation of growth QTL. Conclusions: Multiple genomic regions were associated with PCV2b VL and ADG Post Vx and Post Co-X. Different SNPs were associated with ADG, depending on previous vaccination for PRRS. Results of functional annotation analyses and novel approaches of using previously-reported QTL support the identified regions.
AB - Background: The WUR1000125 (WUR) single nucleotide polymorphism (SNP) can be used as a genetic marker for host response to porcine reproductive and respiratory syndrome (PRRS), PRRS vaccination, and co-infection with porcine circovirus type 2b (PCV2b). Objectives of this study were to identify genomic regions other than WUR associated with host response to PRRS vaccination and PRRSV/PCV2b co-infection and regions with a different effect on host response to co-infection, depending on previous vaccination for PRRS. Methods: Commercial crossbred nursery pigs were pre-selected for WUR genotype (n = 171 AA and 198 AB pigs) where B is the dominant and favorable allele. Half of the pigs were vaccinated for PRRS and 4 weeks later, all pigs were co-infected with PRRS virus and PCV2b. Average daily gain (ADG) and viral load (VL) were quantified post vaccination (Post Vx) and post co-infection (Post Co-X). Single-SNP genome-wide association analyses were then conducted to identify genomic regions associated with response to vaccination and co-infection. Results: Multiple SNPs near the major histocompatibility complex were significantly associated with PCV2b VL (-log 10 P ≥ 5.5), regardless of prior vaccination for PRRS. Several SNPs were also significantly associated with ADG Post Vx and Post Co-X. SNPs with a different effect on ADG, depending on prior vaccination for PRRS, were identified Post Vx (-log 10 P = 5.6) and Post Co-X (-log 10 P = 5.5). No SNPs were significantly associated with vaccination VL (-log10 P ≤ 4.7) or PRRS VL (-log10 P ≤ 4.3). Genes near SNPs associated with vaccination VL, PRRS VL, and PCV2b VL were enriched (P ≤ 0.01) for immune-related pathways and genes near SNPs associated with ADG were enriched for metabolism pathways (P ≤ 0.04). SNPs associated with vaccination VL, PRRS VL, and PCV2b VL showed overrepresentation of health QTL identified in previous studies and SNPs associated with ADG Post Vx of Non-Vx pigs showed overrepresentation of growth QTL. Conclusions: Multiple genomic regions were associated with PCV2b VL and ADG Post Vx and Post Co-X. Different SNPs were associated with ADG, depending on previous vaccination for PRRS. Results of functional annotation analyses and novel approaches of using previously-reported QTL support the identified regions.
KW - Functional annotation
KW - Genome-wide association study
KW - PCV2
KW - PRRS
KW - Quantitative trait locus
KW - Swine
KW - WUR10000125
UR - http://www.scopus.com/inward/record.url?scp=85033601031&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85033601031&partnerID=8YFLogxK
U2 - 10.1186/s12864-017-4182-8
DO - 10.1186/s12864-017-4182-8
M3 - Article
C2 - 29132293
AN - SCOPUS:85033601031
SN - 1471-2164
VL - 18
JO - BMC genomics
JF - BMC genomics
IS - 1
M1 - 865
ER -