TY - JOUR
T1 - Genome-wide identification of genes regulated by the rcs phosphorelay system in Erwinia amylovora
AU - Wang, Dongping
AU - Qi, Mingsheng
AU - Calla, Bernarda
AU - Korban, Schuyler S.
AU - Clough, Steven J.
AU - Cock, Peter J.A.
AU - Sundin, George W.
AU - Toth, Ian
AU - Zhao, Youfu
PY - 2012/1
Y1 - 2012/1
N2 - The exopolysaccharide amylovoran is one of the major pathogenicity factors in Erwinia amylovora, the causal agent of fire blight of apples and pears. We have previously demonstrated that the RcsBCD phosphorelay system is essential for virulence by controlling amylovoran biosynthesis. We have also found that the hybrid sensor kinase RcsC differentially regulates amylovoran production in vitro and in vivo. To further understand how the Rcs system regulates E. amylovora virulence gene expression, we conducted genome-wide microarray analyses to determine the regulons of RcsB and RcsC in liquid medium and on immature pear fruit. Array analyses identified a total of 648 genes differentially regulated by RcsCB in vitro and in vivo. Consistent with our previous findings, RcsB acts as a positive regulator in both conditions, while RcsC positively controls expression of amylovoran biosynthetic genes in vivo but negatively controls expression in vitro. Besides amylovoran biosynthesis and regulatory genes, cell-wall and cell-envelope (membrane) as well as regulatory genes were identified as the major components of the RcsBC regulon, including many novel genes. We have also demonstrated that transcripts of rcsA, rcsC, and rcsD genes but not the rcsB gene were up-regulated when bacterial cells were grown in minimal medium or following infection of pear fruits compared with those grown in Luria Bertani medium. Furthermore, using the genome of E. amylovora ATCC 49946, a hidden Markov model predicted 60 genes with a candidate RcsB binding site in the intergenic region, 28 of which were identified in the microarray assay. Based on these findings as well as previous reported data, a working model has been proposed to illustrate how the Rcs phosphorelay system regulates virulence gene expression in E. amylovora.
AB - The exopolysaccharide amylovoran is one of the major pathogenicity factors in Erwinia amylovora, the causal agent of fire blight of apples and pears. We have previously demonstrated that the RcsBCD phosphorelay system is essential for virulence by controlling amylovoran biosynthesis. We have also found that the hybrid sensor kinase RcsC differentially regulates amylovoran production in vitro and in vivo. To further understand how the Rcs system regulates E. amylovora virulence gene expression, we conducted genome-wide microarray analyses to determine the regulons of RcsB and RcsC in liquid medium and on immature pear fruit. Array analyses identified a total of 648 genes differentially regulated by RcsCB in vitro and in vivo. Consistent with our previous findings, RcsB acts as a positive regulator in both conditions, while RcsC positively controls expression of amylovoran biosynthetic genes in vivo but negatively controls expression in vitro. Besides amylovoran biosynthesis and regulatory genes, cell-wall and cell-envelope (membrane) as well as regulatory genes were identified as the major components of the RcsBC regulon, including many novel genes. We have also demonstrated that transcripts of rcsA, rcsC, and rcsD genes but not the rcsB gene were up-regulated when bacterial cells were grown in minimal medium or following infection of pear fruits compared with those grown in Luria Bertani medium. Furthermore, using the genome of E. amylovora ATCC 49946, a hidden Markov model predicted 60 genes with a candidate RcsB binding site in the intergenic region, 28 of which were identified in the microarray assay. Based on these findings as well as previous reported data, a working model has been proposed to illustrate how the Rcs phosphorelay system regulates virulence gene expression in E. amylovora.
UR - http://www.scopus.com/inward/record.url?scp=84055199876&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84055199876&partnerID=8YFLogxK
U2 - 10.1094/MPMI-08-11-0207
DO - 10.1094/MPMI-08-11-0207
M3 - Article
C2 - 21936662
AN - SCOPUS:84055199876
SN - 0894-0282
VL - 25
SP - 6
EP - 17
JO - Molecular Plant-Microbe Interactions
JF - Molecular Plant-Microbe Interactions
IS - 1
ER -