TY - JOUR
T1 - Genome Sequence of a Thermoacidophilic Methanotroph Belonging to the Verrucomicrobiota Phylum from Geothermal Hot Springs in Yellowstone National Park: A Metagenomic Assembly and Reconstruction
AU - Kim, Hye Won
AU - Kim, Na Kyung
AU - Phillips, Alex P.R.
AU - Parker, David A.
AU - Liu, Ping
AU - Whitaker, Rachel J.
AU - Rao, Christopher V.
AU - Mackie, Roderick Ian
N1 - Funding Information:
Funding: This study was supported by Shell Exploration and Production Inc. (C1610).
Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/1
Y1 - 2022/1
N2 - Verrucomicrobiotal methanotrophs are thermoacidophilic methane oxidizers that have been isolated from volcanic and geothermal regions of the world. We used a metagenomic approach that entailed obtaining the whole genome sequence of a verrucomicrobiotal methanotroph from a microbial consortium enriched from samples obtained from Nymph Lake (89.9°C, pH 2.73) in Yellowstone National Park in the USA. To identify and reconstruct the verrucomicrobiotal genome from Illumina NovaSeq 6000 sequencing data, we constructed a bioinformatic pipeline with various combinations of de novo assembly, alignment, and binning algorithms. Based on the marker gene (pmoA), we identified and assembled the Candidatus Methylacidiphilum sp. YNP IV genome (2.47 Mbp, 2392 ORF, and 41.26% GC content). In a comparison of average nucleotide identity between Ca. Methylacidiphilum sp. YNP IV and Ca. Methylacidiphilum fumariolicum SolV, its closest 16S rRNA gene sequence relative, is lower than 95%, suggesting that Ca. Methylacidiphilum sp. YNP IV can be regarded as a different species. The Ca. Methylacidiphilum sp. YNP IV genome assembly showed most of the key genes for methane metabolism, the CBB pathway for CO2 fixation, nitrogen fixation and assimilation, hydrogenases, and rare earth elements transporter, as well as defense mechanisms. The assembly and reconstruction of a thermoacidophilic methanotroph belonging to the Verrucomicrobiota phylum from a geothermal environment adds further evidence and knowledge concerning the diversity of biological methane oxidation and on the adaptation of this geochemically relevant reaction in extreme environments.
AB - Verrucomicrobiotal methanotrophs are thermoacidophilic methane oxidizers that have been isolated from volcanic and geothermal regions of the world. We used a metagenomic approach that entailed obtaining the whole genome sequence of a verrucomicrobiotal methanotroph from a microbial consortium enriched from samples obtained from Nymph Lake (89.9°C, pH 2.73) in Yellowstone National Park in the USA. To identify and reconstruct the verrucomicrobiotal genome from Illumina NovaSeq 6000 sequencing data, we constructed a bioinformatic pipeline with various combinations of de novo assembly, alignment, and binning algorithms. Based on the marker gene (pmoA), we identified and assembled the Candidatus Methylacidiphilum sp. YNP IV genome (2.47 Mbp, 2392 ORF, and 41.26% GC content). In a comparison of average nucleotide identity between Ca. Methylacidiphilum sp. YNP IV and Ca. Methylacidiphilum fumariolicum SolV, its closest 16S rRNA gene sequence relative, is lower than 95%, suggesting that Ca. Methylacidiphilum sp. YNP IV can be regarded as a different species. The Ca. Methylacidiphilum sp. YNP IV genome assembly showed most of the key genes for methane metabolism, the CBB pathway for CO2 fixation, nitrogen fixation and assimilation, hydrogenases, and rare earth elements transporter, as well as defense mechanisms. The assembly and reconstruction of a thermoacidophilic methanotroph belonging to the Verrucomicrobiota phylum from a geothermal environment adds further evidence and knowledge concerning the diversity of biological methane oxidation and on the adaptation of this geochemically relevant reaction in extreme environments.
KW - Functional metabolism
KW - Metagenome assembled genome
KW - Methanotroph
KW - Verrucomicrobiota
UR - http://www.scopus.com/inward/record.url?scp=85123412379&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85123412379&partnerID=8YFLogxK
U2 - 10.3390/microorganisms10010142
DO - 10.3390/microorganisms10010142
M3 - Article
C2 - 35056591
SN - 2076-2607
VL - 10
JO - Microorganisms
JF - Microorganisms
IS - 1
M1 - 142
ER -