TY - JOUR
T1 - Genetic analysis of the archaeon Methanosarcina barkeri fusaro reveals a central role for ech hydrogenase and ferredoxin in methanogenesis and carbon fixation
AU - Meuer, Jörn
AU - Kuettner, H. Craig
AU - Zhang, Jun Kai
AU - Hedderich, Reiner
AU - Metcalf, William W.
PY - 2002/4/16
Y1 - 2002/4/16
N2 - Ech hydrogenase (Ech) from the methanogenic archaeon Methanosarcina barkeri catalyzes the reversible reduction of ferredoxin by H2 and is a member of a distinct group of membrane-bound [NiFe] hydrogenases with sequence similarity to energy-conserving NADH:quinone oxidoreductase (complex I). To elucidate the physiological role(s) of Ech a mutant lacking this enzyme was constructed. The mutant was unable to grow on methanol/H2/CO2, H2/CO2, or acetate as carbon and energy sources but showed wild-type growth rates with methanol as sole substrate. Addition of pyruvate to the growth medium restored growth on methanol/H2/CO2 but not on H2/CO2 or acetate. Results obtained from growth experiments, cell suspension experiments, and enzyme activity measurements in cell extracts provide compelling evidence for essential functions of Ech and a 2[4Fe-4S] ferredoxin in the metabolism of M. barkeri. The following conclusions were made. (i) In acetoclastic methanogenesis, Ech catalyzes H2 formation from reduced ferredoxin, generated by the oxidation of the carbonyl group of acetate to CO2. (ii) Under autotrophic growth conditions, the enzyme catalyzes the energetically unfavorable reduction of ferredoxin by H2, most probably driven by reversed electron transport, and the reduced ferredoxin thus generated functions as low potential electron donor for the synthesis of pyruvate in an anabolic pathway. (iii) Reduced ferredoxin in addition provides the reducing equivalents for the first step of methanogenesis from H2/CO2, the reduction of CO2 to formylmethanofuran. Thus, in vivo genetic analysis has led to the identification of the electron donor of this key initial step of methanogenesis.
AB - Ech hydrogenase (Ech) from the methanogenic archaeon Methanosarcina barkeri catalyzes the reversible reduction of ferredoxin by H2 and is a member of a distinct group of membrane-bound [NiFe] hydrogenases with sequence similarity to energy-conserving NADH:quinone oxidoreductase (complex I). To elucidate the physiological role(s) of Ech a mutant lacking this enzyme was constructed. The mutant was unable to grow on methanol/H2/CO2, H2/CO2, or acetate as carbon and energy sources but showed wild-type growth rates with methanol as sole substrate. Addition of pyruvate to the growth medium restored growth on methanol/H2/CO2 but not on H2/CO2 or acetate. Results obtained from growth experiments, cell suspension experiments, and enzyme activity measurements in cell extracts provide compelling evidence for essential functions of Ech and a 2[4Fe-4S] ferredoxin in the metabolism of M. barkeri. The following conclusions were made. (i) In acetoclastic methanogenesis, Ech catalyzes H2 formation from reduced ferredoxin, generated by the oxidation of the carbonyl group of acetate to CO2. (ii) Under autotrophic growth conditions, the enzyme catalyzes the energetically unfavorable reduction of ferredoxin by H2, most probably driven by reversed electron transport, and the reduced ferredoxin thus generated functions as low potential electron donor for the synthesis of pyruvate in an anabolic pathway. (iii) Reduced ferredoxin in addition provides the reducing equivalents for the first step of methanogenesis from H2/CO2, the reduction of CO2 to formylmethanofuran. Thus, in vivo genetic analysis has led to the identification of the electron donor of this key initial step of methanogenesis.
UR - http://www.scopus.com/inward/record.url?scp=0037117505&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037117505&partnerID=8YFLogxK
U2 - 10.1073/pnas.072615499
DO - 10.1073/pnas.072615499
M3 - Article
C2 - 11929975
AN - SCOPUS:0037117505
SN - 0027-8424
VL - 99
SP - 5632
EP - 5637
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 8
ER -