TY - JOUR
T1 - Generation of a stable, aminotyrosyl radical-induced α2β2 complex of Escherichia coli class Ia ribonucleotide reductase
AU - Minnihan, Ellen C.
AU - Ando, Nozomi
AU - Brignole, Edward J.
AU - Olshansky, Lisa
AU - Chittuluru, Johnathan
AU - Asturias, Francisco J.
AU - Drennan, Catherine L.
AU - Nocera, Daniel G.
AU - Stubbe, Jo Anne
PY - 2013/3/5
Y1 - 2013/3/5
N2 - Ribonucleotide reductase (RNR) catalyzes the conversion of nucleoside diphosphates to deoxynucleoside diphosphates (dNDPs). The Escherichia coli class Ia RNR uses a mechanism of radical propagation by which a cysteine in the active site of the RNR large (α2) subunit is transiently oxidized by a stable tyrosyl radical (Y•) in the RNR small (β2) subunit over a 35-Å pathway of redox-active amino acids: Y122• ↔ [W48?] ↔ Y356 in β2 to Y731 ↔ Y730 ↔ C439 in α2. When 3-aminotyrosine (NH2Y) is incorporated in place of Y730, a long-lived NH2Y730• is generated in α2 in the presence of wildtype (wt)-β2, substrate, and effector. This radical intermediate is chemically and kinetically competent to generate dNDPs. Herein, evidence is presented that NH2Y730• induces formation of a kinetically stable α2β2 complex. Under conditions that generate NH2Y730•, binding between Y730NH2Y-α2 and wt-β2 is 25-fold tighter (Kd = 7 nM) than for wt-α2|wt-β2 and is cooperative. Stopped-flow fluorescence experiments establish that the dissociation rate constant for the Y730NH2Y-α2|wt- β2 interaction is ∼104-fold slower than for the wt subunits (∼60 s-1). EM and small-angle X-ray scattering studies indicate that the stabilized species is a compact globular α2β2, consistent with the structure predicted by Uhlin and Eklund's docking model [Uhlin U, Eklund H (1994) Nature 370(6490):533-539]. These results present a structural and biochemical characterization of the active RNR complex "trapped" during turnover, and suggest that stabilization of the α2β2 state may be a regulatory mechanism for protecting the catalytic radical and ensuring the fidelity of its reactivity.
AB - Ribonucleotide reductase (RNR) catalyzes the conversion of nucleoside diphosphates to deoxynucleoside diphosphates (dNDPs). The Escherichia coli class Ia RNR uses a mechanism of radical propagation by which a cysteine in the active site of the RNR large (α2) subunit is transiently oxidized by a stable tyrosyl radical (Y•) in the RNR small (β2) subunit over a 35-Å pathway of redox-active amino acids: Y122• ↔ [W48?] ↔ Y356 in β2 to Y731 ↔ Y730 ↔ C439 in α2. When 3-aminotyrosine (NH2Y) is incorporated in place of Y730, a long-lived NH2Y730• is generated in α2 in the presence of wildtype (wt)-β2, substrate, and effector. This radical intermediate is chemically and kinetically competent to generate dNDPs. Herein, evidence is presented that NH2Y730• induces formation of a kinetically stable α2β2 complex. Under conditions that generate NH2Y730•, binding between Y730NH2Y-α2 and wt-β2 is 25-fold tighter (Kd = 7 nM) than for wt-α2|wt-β2 and is cooperative. Stopped-flow fluorescence experiments establish that the dissociation rate constant for the Y730NH2Y-α2|wt- β2 interaction is ∼104-fold slower than for the wt subunits (∼60 s-1). EM and small-angle X-ray scattering studies indicate that the stabilized species is a compact globular α2β2, consistent with the structure predicted by Uhlin and Eklund's docking model [Uhlin U, Eklund H (1994) Nature 370(6490):533-539]. These results present a structural and biochemical characterization of the active RNR complex "trapped" during turnover, and suggest that stabilization of the α2β2 state may be a regulatory mechanism for protecting the catalytic radical and ensuring the fidelity of its reactivity.
KW - Conformational equilibria
KW - Radical transfer
KW - Unnatural amino acid
UR - http://www.scopus.com/inward/record.url?scp=84874632835&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84874632835&partnerID=8YFLogxK
U2 - 10.1073/pnas.1220691110
DO - 10.1073/pnas.1220691110
M3 - Article
C2 - 23431160
AN - SCOPUS:84874632835
SN - 0027-8424
VL - 110
SP - 3835
EP - 3840
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 10
ER -