Abstract

Conventional low-power static random access memories (SRAMs) reduce read energy by decreasing the bit-line voltage swings uniformly across the bit-line columns. This is because the read energy is proportional to the bit-line swings. On the other hand, bit-line swings are limited by the need to avoid decision errors especially in the most significant bits. We propose a principled approach to determine optimal non-uniform bit-line swings by formulating convex optimization problems. For a given constraint on mean squared error of retrieved words, we consider criteria to minimize energy (for low-power SRAMs), maximize speed (for high-speed SRAMs), and minimize energy-delay product. These optimization problems can be interpreted as classical water-filling, ground-flattening and water-filling, and sand-pouring and water-filling, respectively. By leveraging these interpretations, we also propose greedy algorithms to obtain optimized discrete swings. Numerical results show that energy-optimal swing assignment reduces energy consumption by half at a peak signal-to-noise ratio of 30 dB for an 8-bit accessed word. The energy savings increase to four times for a 16-bit accessed word.

Original languageEnglish (US)
Article number8368137
Pages (from-to)4826-4841
Number of pages16
JournalIEEE Transactions on Communications
Volume66
Issue number10
DOIs
StatePublished - Oct 2018

Keywords

  • Static random access memory (SRAM)
  • convex optimization
  • discrete optimization
  • information theory

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Generalized water-filling for source-aware energy-efficient SRAMs'. Together they form a unique fingerprint.

Cite this