Generalized q-gaussian von neumann algebras with coefficients III. Unique prime factorization results

Marius Junge, Bogdan Udrea

Research output: Contribution to journalArticle

Abstract

We prove some unique prime factorization results for tensor products of type II 1 factors of the form Γ q (C,S x H) arising from symmetric independent copies with sub-exponential dimensions of the spaces D k (S) and dim(H finite and greater than a constant depending on q.

Original languageEnglish (US)
Pages (from-to)43-47
Number of pages5
JournalREVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES
Volume64
Issue number1
StatePublished - Jan 1 2019

Fingerprint

L'Hôpital's Rule
D-space
Von Neumann Algebra
Factorization
Tensor Product
Algebra
Tensors
Coefficient
Form

Keywords

  • Prime factorization
  • Type II factors
  • Von Neumann algebras

ASJC Scopus subject areas

  • Applied Mathematics
  • Mathematics(all)

Cite this

Generalized q-gaussian von neumann algebras with coefficients III. Unique prime factorization results. / Junge, Marius; Udrea, Bogdan.

In: REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, Vol. 64, No. 1, 01.01.2019, p. 43-47.

Research output: Contribution to journalArticle

@article{a759619e64ca42f298034f10589f7568,
title = "Generalized q-gaussian von neumann algebras with coefficients III. Unique prime factorization results",
abstract = "We prove some unique prime factorization results for tensor products of type II 1 factors of the form Γ q (C,S x H) arising from symmetric independent copies with sub-exponential dimensions of the spaces D k (S) and dim(H finite and greater than a constant depending on q.",
keywords = "Prime factorization, Type II factors, Von Neumann algebras",
author = "Marius Junge and Bogdan Udrea",
year = "2019",
month = "1",
day = "1",
language = "English (US)",
volume = "64",
pages = "43--47",
journal = "REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES",
issn = "0035-3965",
number = "1",

}

TY - JOUR

T1 - Generalized q-gaussian von neumann algebras with coefficients III. Unique prime factorization results

AU - Junge, Marius

AU - Udrea, Bogdan

PY - 2019/1/1

Y1 - 2019/1/1

N2 - We prove some unique prime factorization results for tensor products of type II 1 factors of the form Γ q (C,S x H) arising from symmetric independent copies with sub-exponential dimensions of the spaces D k (S) and dim(H finite and greater than a constant depending on q.

AB - We prove some unique prime factorization results for tensor products of type II 1 factors of the form Γ q (C,S x H) arising from symmetric independent copies with sub-exponential dimensions of the spaces D k (S) and dim(H finite and greater than a constant depending on q.

KW - Prime factorization

KW - Type II factors

KW - Von Neumann algebras

UR - http://www.scopus.com/inward/record.url?scp=85064662903&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85064662903&partnerID=8YFLogxK

M3 - Article

VL - 64

SP - 43

EP - 47

JO - REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES

JF - REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES

SN - 0035-3965

IS - 1

ER -