Generalized q-gaussian von Neumann algebras with coefficients I

Relative strong solidity

Marius Junge, Bogdan Udrea

Research output: Contribution to journalArticle

Abstract

We define Γq(B, S ⊗ H/, the generalized q-gaussian von Neumann algebras associated to a sequence of symmetric independent copies (πj, B, A,D) and to a subset 1 ∈ S = S* ⊂ A and, under certain assumptions, prove their strong solidity relative to B. We provide many examples of strongly solid generalized q-gaussian von Neumann algebras. We also obtain nonisomorphism and nonembedability results about some of these von Neumann algebras.

Original languageEnglish (US)
Pages (from-to)1397-1463
Number of pages67
JournalAnalysis and PDE
Volume12
Issue number7
DOIs
StatePublished - Jan 1 2019

Fingerprint

Von Neumann Algebra
Algebra
Coefficient
Subset

Keywords

  • Q-gaussian von Neumann algebras with coefficients
  • Relative strong solidity
  • Von Neumann algebras

ASJC Scopus subject areas

  • Analysis
  • Numerical Analysis
  • Applied Mathematics

Cite this

Generalized q-gaussian von Neumann algebras with coefficients I : Relative strong solidity. / Junge, Marius; Udrea, Bogdan.

In: Analysis and PDE, Vol. 12, No. 7, 01.01.2019, p. 1397-1463.

Research output: Contribution to journalArticle

@article{fd53d93114fa4992816e4dcf0045633f,
title = "Generalized q-gaussian von Neumann algebras with coefficients I: Relative strong solidity",
abstract = "We define Γq(B, S ⊗ H/, the generalized q-gaussian von Neumann algebras associated to a sequence of symmetric independent copies (πj, B, A,D) and to a subset 1 ∈ S = S* ⊂ A and, under certain assumptions, prove their strong solidity relative to B. We provide many examples of strongly solid generalized q-gaussian von Neumann algebras. We also obtain nonisomorphism and nonembedability results about some of these von Neumann algebras.",
keywords = "Q-gaussian von Neumann algebras with coefficients, Relative strong solidity, Von Neumann algebras",
author = "Marius Junge and Bogdan Udrea",
year = "2019",
month = "1",
day = "1",
doi = "10.2140/apde.2019.12.1397",
language = "English (US)",
volume = "12",
pages = "1397--1463",
journal = "Analysis and PDE",
issn = "2157-5045",
publisher = "Mathematical Sciences Publishers",
number = "7",

}

TY - JOUR

T1 - Generalized q-gaussian von Neumann algebras with coefficients I

T2 - Relative strong solidity

AU - Junge, Marius

AU - Udrea, Bogdan

PY - 2019/1/1

Y1 - 2019/1/1

N2 - We define Γq(B, S ⊗ H/, the generalized q-gaussian von Neumann algebras associated to a sequence of symmetric independent copies (πj, B, A,D) and to a subset 1 ∈ S = S* ⊂ A and, under certain assumptions, prove their strong solidity relative to B. We provide many examples of strongly solid generalized q-gaussian von Neumann algebras. We also obtain nonisomorphism and nonembedability results about some of these von Neumann algebras.

AB - We define Γq(B, S ⊗ H/, the generalized q-gaussian von Neumann algebras associated to a sequence of symmetric independent copies (πj, B, A,D) and to a subset 1 ∈ S = S* ⊂ A and, under certain assumptions, prove their strong solidity relative to B. We provide many examples of strongly solid generalized q-gaussian von Neumann algebras. We also obtain nonisomorphism and nonembedability results about some of these von Neumann algebras.

KW - Q-gaussian von Neumann algebras with coefficients

KW - Relative strong solidity

KW - Von Neumann algebras

UR - http://www.scopus.com/inward/record.url?scp=85069863650&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85069863650&partnerID=8YFLogxK

U2 - 10.2140/apde.2019.12.1397

DO - 10.2140/apde.2019.12.1397

M3 - Article

VL - 12

SP - 1397

EP - 1463

JO - Analysis and PDE

JF - Analysis and PDE

SN - 2157-5045

IS - 7

ER -