Generalized natural mode expansion for arbitrary electromagnetic fields

Q. I. Dai, W. C. Chew, L. J. Jiang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A generalized natural mode expansion theory for investigating arbitrary electromagnetic fields is presented. When an inhomogeneity is bounded with impenetrable boundaries, the field excited by arbitrary sources is expanded with a complete set of eigenmodes, which are classified into trapped modes and exterior modes. As the boundaries tend to infinity, trapped modes remain unchanged, while exterior modes form a continuum. In numerical studies, unbounded systems can be emulated by placing perfectly matched layers (PMLs) at finite extent. Simulation shows that only a few natural modes are prominent in expanding the excited field in a properly functioning device. Such a reduced modal picture can provide quick guidance as well as useful physical insight for engineering design and optimization of electromagnetic components and devices.

Original languageEnglish (US)
Title of host publication2014 31th URSI General Assembly and Scientific Symposium, URSI GASS 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781467352253
DOIs
StatePublished - Oct 17 2014
Event31st General Assembly and Scientific Symposium of the International Union of Radio Science, URSI GASS 2014 - Beijing, China
Duration: Aug 16 2014Aug 23 2014

Publication series

Name2014 31th URSI General Assembly and Scientific Symposium, URSI GASS 2014

Other

Other31st General Assembly and Scientific Symposium of the International Union of Radio Science, URSI GASS 2014
Country/TerritoryChina
CityBeijing
Period8/16/148/23/14

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Generalized natural mode expansion for arbitrary electromagnetic fields'. Together they form a unique fingerprint.

Cite this