Generalization performance of some learning problems in hilbert functional spaces

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We investigate the generalization performance of some learning problems in Hilbert functional Spaces. We introduce a notion of convergence of the estimated functional predictor to the best underlying predictor, and obtain an estimate on the rate of the convergence. This estimate allows us to derive generalization bounds on some learning formulations.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 14 - Proceedings of the 2001 Conference, NIPS 2001
PublisherNeural information processing systems foundation
ISBN (Print)0262042088, 9780262042086
StatePublished - 2002
Externally publishedYes
Event15th Annual Neural Information Processing Systems Conference, NIPS 2001 - Vancouver, BC, Canada
Duration: Dec 3 2001Dec 8 2001

Publication series

NameAdvances in Neural Information Processing Systems
ISSN (Print)1049-5258

Other

Other15th Annual Neural Information Processing Systems Conference, NIPS 2001
Country/TerritoryCanada
CityVancouver, BC
Period12/3/0112/8/01

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Generalization performance of some learning problems in hilbert functional spaces'. Together they form a unique fingerprint.

Cite this