Generalization and Transfer Learning in Neural Networks Performing Shape, Size, and Color Classification

Aishi Huang, Philip A. Huebner, Jon A. Willits

Research output: Contribution to conferencePaperpeer-review

Abstract

We investigated neural networks' ability to generalize during visual object recognition. In three experiments, we show that while basic multilayer neural networks easily learn to classify the objects on which they are trained, they show serious difficulties transferring that knowledge to novel items. However, our experiments also show that when the previously trained networks are then trained on the novel items, they learn to respond correctly to the novel items much faster than untrained networks. This shows that these networks are learning abstract representations that go beyond the simple items on which they were trained. We argue that this demonstrates that regarding abstract rule learning, the problem with neural networks is not their inability to learn abstractions, but their ability to apply that knowledge when classifying new objects.

Original languageEnglish (US)
Pages3258-3264
Number of pages7
StatePublished - 2022
Event44th Annual Meeting of the Cognitive Science Society: Cognitive Diversity, CogSci 2022 - Toronto, Canada
Duration: Jul 27 2022Jul 30 2022

Conference

Conference44th Annual Meeting of the Cognitive Science Society: Cognitive Diversity, CogSci 2022
Country/TerritoryCanada
CityToronto
Period7/27/227/30/22

Keywords

  • knowledge representation
  • neural networks
  • object recognition
  • transfer learning

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Science Applications
  • Human-Computer Interaction
  • Cognitive Neuroscience

Fingerprint

Dive into the research topics of 'Generalization and Transfer Learning in Neural Networks Performing Shape, Size, and Color Classification'. Together they form a unique fingerprint.

Cite this