General-relativistic simulations of three-dimensional core-collapse supernovae

Christian D. Ott, Ernazar Abdikamalov, Philipp Mösta, Roland Haas, Steve Drasco, Evan P. O'Connor, Christian Reisswig, Casey A. Meakin, Erik Schnetter

Research output: Contribution to journalArticlepeer-review


We study the three-dimensional (3D) hydrodynamics of the post-core-bounce phase of the collapse of a 27 M· star and pay special attention to the development of the standing accretion shock instability (SASI) and neutrino-driven convection. To this end, we perform 3D general-relativistic simulations with a three-species neutrino leakage scheme. The leakage scheme captures the essential aspects of neutrino cooling, heating, and lepton number exchange as predicted by radiation-hydrodynamics simulations. The 27 M · progenitor was studied in 2D by Müller et al., who observed strong growth of the SASI while neutrino-driven convection was suppressed. In our 3D simulations, neutrino-driven convection grows from numerical perturbations imposed by our Cartesian grid. It becomes the dominant instability and leads to large-scale non-oscillatory deformations of the shock front. These will result in strongly aspherical explosions without the need for large-scale SASI shock oscillations. Low-ℓ-mode SASI oscillations are present in our models, but saturate at small amplitudes that decrease with increasing neutrino heating and vigor of convection. Our results, in agreement with simpler 3D Newtonian simulations, suggest that once neutrino-driven convection is started, it is likely to become the dominant instability in 3D. Whether it is the primary instability after bounce will ultimately depend on the physical seed perturbations present in the cores of massive stars. The gravitational wave signal, which we extract and analyze for the first time from 3D general-relativistic models, will serve as an observational probe of the postbounce dynamics and, in combination with neutrinos, may allow us to determine the primary hydrodynamic instability.

Original languageEnglish (US)
Article number115
JournalAstrophysical Journal
Issue number2
StatePublished - May 10 2013
Externally publishedYes


  • gravitation
  • gravitational waves
  • hydrodynamics
  • neutrinos
  • supernovae: general

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'General-relativistic simulations of three-dimensional core-collapse supernovae'. Together they form a unique fingerprint.

Cite this