General Forms of Finite Population Central Limit Theorems with Applications to Causal Inference

Xinran Li, Peng Ding

Research output: Contribution to journalReview articlepeer-review


Frequentists’ inference often delivers point estimators associated with confidence intervals or sets for parameters of interest. Constructing the confidence intervals or sets requires understanding the sampling distributions of the point estimators, which, in many but not all cases, are related to asymptotic Normal distributions ensured by central limit theorems. Although previous literature has established various forms of central limit theorems for statistical inference in super population models, we still need general and convenient forms of central limit theorems for some randomization-based causal analyses of experimental data, where the parameters of interests are functions of a finite population and randomness comes solely from the treatment assignment. We use central limit theorems for sample surveys and rank statistics to establish general forms of the finite population central limit theorems that are particularly useful for proving asymptotic distributions of randomization tests under the sharp null hypothesis of zero individual causal effects, and for obtaining the asymptotic repeated sampling distributions of the causal effect estimators. The new central limit theorems hold for general experimental designs with multiple treatment levels, multiple treatment factors and vector outcomes, and are immediately applicable for studying the asymptotic properties of many methods in causal inference, including instrumental variable, regression adjustment, rerandomization, cluster-randomized experiments, and so on. Previously, the asymptotic properties of these problems are often based on heuristic arguments, which in fact rely on general forms of finite population central limit theorems that have not been established before. Our new theorems fill this gap by providing more solid theoretical foundation for asymptotic randomization-based causal inference. Supplementary materials for this article are available online.

Original languageEnglish (US)
Pages (from-to)1759-1769
Number of pages11
JournalJournal of the American Statistical Association
Issue number520
StatePublished - Oct 2 2017
Externally publishedYes


  • Conservative confidence set
  • Fisher randomization test
  • Potential outcome
  • Randomization inference
  • Repeated sampling property
  • Sharp null hypothesis

ASJC Scopus subject areas

  • Statistics and Probability
  • Statistics, Probability and Uncertainty


Dive into the research topics of 'General Forms of Finite Population Central Limit Theorems with Applications to Causal Inference'. Together they form a unique fingerprint.

Cite this