TY - JOUR
T1 - Gene networks driving bovine milk fat synthesis during the lactation cycle
AU - Bionaz, Massimo
AU - Loor, Juan J.
N1 - Funding Information:
Partial financial support for the gene expression work and milk fatty acid analysis was provided by the Cooperative State Research, Education and Extension Service, U. S. Department of Agriculture, under project No. ILLU-538-307 (to JJL). We gratefully acknowledge the help from the staff of the University of Illinois Dairy Research and Teaching Unit for animal care, Dr. Robin E. Everts (University of Illinois) for his continued support with annotation of the bovine microarray platform, Dr. Harris A. Lewin (University of Illinois) for the continued collaborations using the bovine oligonucleotide microarray, and Dr. Walter L. Hurley for helpful suggestions during development of the manuscript.
PY - 2008/7/31
Y1 - 2008/7/31
N2 - Background: The molecular events associated with regulation of milk fat synthesis in the bovine mammary gland remain largely unknown. Our objective was to study mammary tissue mRNA expression via quantitative PCR of 45 genes associated with lipid synthesis (triacylglycerol and phospholipids) and secretion from the late pre-partum/non-lactating period through the end of subsequent lactation. mRNA expression was coupled with milk fatty acid (FA) composition and calculated indexes of FA desaturation and de novo synthesis by the mammary gland. Results: Marked up-regulation and/or % relative mRNA abundance during lactation were observed for genes associated with mammary FA uptake from blood (LPL, CD36), intracellular FA trafficking (FABP3), long-chain (ACSL1) and short-chain (ACSS2) intracellular FA activation, de novo FA synthesis (ACACA, FASN), desaturation (SCD, FADS1), triacylglycerol synthesis (AGPAT6, GPAM, LPIN1), lipid droplet formation (BTN1A1, XDH), ketone body utilization (BDH1), and transcription regulation (INSIG1, PPARG, PPARGC1A). Change in SREBF1 mRNA expression during lactation, thought to be central for milk fat synthesis regulation, was ≤2-fold in magnitude, while expression of INSIG1, which negatively regulates SREBP activation, was ≥12-fold and had a parallel pattern of expression to PPARGC1A. Genes involved in phospholipid synthesis had moderate up-regulation in expression and % relative mRNA abundance. The mRNA abundance and up-regulation in expression of ABCG2 during lactation was markedly high, suggesting a biological role of this gene in milk synthesis/secretion. Weak correlations were observed between both milk FA composition and desaturase indexes (i.e., apparent SCD activity) with mRNA expression pattern of genes measured. Conclusion: A network of genes participates in coordinating milk fat synthesis and secretion. Results challenge the proposal that SREBF1 is central for milk fat synthesis regulation and highlight a pivotal role for a concerted action among PPARG, PPARGC1A, and INSIG1. Expression of SCD, the most abundant gene measured, appears to be key during milk fat synthesis. The lack of correlation between gene expression and calculated desaturase indexes does not support their use to infer mRNA expression or enzyme activity (e.g., SCD). Longitudinal mRNA expression allowed development of transcriptional regulation networks and an updated model of milk fat synthesis regulation.
AB - Background: The molecular events associated with regulation of milk fat synthesis in the bovine mammary gland remain largely unknown. Our objective was to study mammary tissue mRNA expression via quantitative PCR of 45 genes associated with lipid synthesis (triacylglycerol and phospholipids) and secretion from the late pre-partum/non-lactating period through the end of subsequent lactation. mRNA expression was coupled with milk fatty acid (FA) composition and calculated indexes of FA desaturation and de novo synthesis by the mammary gland. Results: Marked up-regulation and/or % relative mRNA abundance during lactation were observed for genes associated with mammary FA uptake from blood (LPL, CD36), intracellular FA trafficking (FABP3), long-chain (ACSL1) and short-chain (ACSS2) intracellular FA activation, de novo FA synthesis (ACACA, FASN), desaturation (SCD, FADS1), triacylglycerol synthesis (AGPAT6, GPAM, LPIN1), lipid droplet formation (BTN1A1, XDH), ketone body utilization (BDH1), and transcription regulation (INSIG1, PPARG, PPARGC1A). Change in SREBF1 mRNA expression during lactation, thought to be central for milk fat synthesis regulation, was ≤2-fold in magnitude, while expression of INSIG1, which negatively regulates SREBP activation, was ≥12-fold and had a parallel pattern of expression to PPARGC1A. Genes involved in phospholipid synthesis had moderate up-regulation in expression and % relative mRNA abundance. The mRNA abundance and up-regulation in expression of ABCG2 during lactation was markedly high, suggesting a biological role of this gene in milk synthesis/secretion. Weak correlations were observed between both milk FA composition and desaturase indexes (i.e., apparent SCD activity) with mRNA expression pattern of genes measured. Conclusion: A network of genes participates in coordinating milk fat synthesis and secretion. Results challenge the proposal that SREBF1 is central for milk fat synthesis regulation and highlight a pivotal role for a concerted action among PPARG, PPARGC1A, and INSIG1. Expression of SCD, the most abundant gene measured, appears to be key during milk fat synthesis. The lack of correlation between gene expression and calculated desaturase indexes does not support their use to infer mRNA expression or enzyme activity (e.g., SCD). Longitudinal mRNA expression allowed development of transcriptional regulation networks and an updated model of milk fat synthesis regulation.
UR - http://www.scopus.com/inward/record.url?scp=52249089184&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=52249089184&partnerID=8YFLogxK
U2 - 10.1186/1471-2164-9-366
DO - 10.1186/1471-2164-9-366
M3 - Article
C2 - 18671863
AN - SCOPUS:52249089184
SN - 1471-2164
VL - 9
JO - BMC genomics
JF - BMC genomics
M1 - 366
ER -