TY - JOUR
T1 - Gene network and pathway analysis of bovine mammary tissue challenged with Streptococcus uberis reveals induction of cell proliferation and inhibition of PPAR signaling as potential mechanism for the negative relationships between immune response and lipid metabolism
AU - Moyes, Kasey M.
AU - Drackley, James K.
AU - Morin, Dawn E.
AU - Bionaz, Massimo
AU - Rodriguez-Zas, Sandra L.
AU - Everts, Robin E.
AU - Lewin, Harris A.
AU - Loor, Juan J.
N1 - Funding Information:
Financial support for the animal study, microarray analysis, and qPCR analysis was provided in part by the U. S. Department of Agriculture, Cooperative State Research, Education and Extension Service, Washington, DC, Section 1433 Animal Health and Disease Funds appropriated to the Illinois Agricultural Experiment Station, Urbana, IL under project No. ILLU-538-981 (JJL), and also by NRI competitive grant 2007-35204-17758 (JJL). Partial support for qPCR analysis also was provided by the USDA Cooperative State Research, Education and Extension Service and the Illinois Agricultural Experiment Station, Urbana, IL through multistate project number W-1181 (JKD). The Mitchell Fellowship in Animal Nutrition program, University of Illinois, provided financial support to KMM during 2007 and 2008. The authors thank Dr. Joseph Hogan, The Ohio State University, for providing the S. uberis (O140J) used for this study. In addition, gratitude is extended to the University of Illinois Dairy Research Unit staff, Dr. Walter Hurley, Dr. Dave Carlson, Dr. Nicole Janovick, Jennifer Stamey, Daniel Graugnard, and Karen Fried for assistance with animal care and data collection.
PY - 2009/11/19
Y1 - 2009/11/19
N2 - Background: Information generated via microarrays might uncover interactions between the mammary gland and Streptococcus uberis (S. uberis) that could help identify control measures for the prevention and spread of S. uberis mastitis, as well as improve overall animal health and welfare, and decrease economic losses to dairy farmers. The main objective of this study was to determine the most affected gene networks and pathways in mammary tissue in response to an intramammary infection (IMI) with S. uberis and relate these with other physiological measurements associated with immune and/or metabolic responses to mastitis challenge with S. uberis O140J. Results: Streptococcus uberis IMI resulted in 2,102 (1,939 annotated) differentially expressed genes (DEG). Within this set of DEG, we uncovered 20 significantly enriched canonical pathways (with 20 to 61 genes each), the majority of which were signaling pathways. Among the most inhibited were LXR/RXR Signaling and PPARα/RXRα Signaling. Pathways activated by IMI were IL-10 Signaling and IL-6 Signaling which likely reflected counter mechanisms of mammary tissue to respond to infection. Of the 2,102 DEG, 1,082 were up-regulated during IMI and were primarily involved with the immune response, e.g., IL6, TNF, IL8, IL10, SELL, LYZ, and SAA3. Genes down-regulated (1,020) included those associated with milk fat synthesis, e.g., LPIN1, LPL, CD36, and BTN1A1. Network analysis of DEG indicated that TNF had positive relationships with genes involved with immune system function (e.g., CD14, IL8, IL1B, and TLR2) and negative relationships with genes involved with lipid metabolism (e.g., GPAM, SCD, FABP4, CD36, and LPL) and antioxidant activity (SOD1). Conclusion: Results provided novel information into the early signaling and metabolic pathways in mammary tissue that are associated with the innate immune response to S. uberis infection. Our study indicated that IMI challenge with S. uberis (strain O140J) elicited a strong transcriptomic response, leading to potent activation of pro-inflammatory pathways that were associated with a marked inhibition of lipid synthesis, stress-activated kinase signaling cascades, and PPAR signaling (most likely PPARγ). This latter effect may provide a mechanistic explanation for the inverse relationship between immune response and milk fat synthesis.
AB - Background: Information generated via microarrays might uncover interactions between the mammary gland and Streptococcus uberis (S. uberis) that could help identify control measures for the prevention and spread of S. uberis mastitis, as well as improve overall animal health and welfare, and decrease economic losses to dairy farmers. The main objective of this study was to determine the most affected gene networks and pathways in mammary tissue in response to an intramammary infection (IMI) with S. uberis and relate these with other physiological measurements associated with immune and/or metabolic responses to mastitis challenge with S. uberis O140J. Results: Streptococcus uberis IMI resulted in 2,102 (1,939 annotated) differentially expressed genes (DEG). Within this set of DEG, we uncovered 20 significantly enriched canonical pathways (with 20 to 61 genes each), the majority of which were signaling pathways. Among the most inhibited were LXR/RXR Signaling and PPARα/RXRα Signaling. Pathways activated by IMI were IL-10 Signaling and IL-6 Signaling which likely reflected counter mechanisms of mammary tissue to respond to infection. Of the 2,102 DEG, 1,082 were up-regulated during IMI and were primarily involved with the immune response, e.g., IL6, TNF, IL8, IL10, SELL, LYZ, and SAA3. Genes down-regulated (1,020) included those associated with milk fat synthesis, e.g., LPIN1, LPL, CD36, and BTN1A1. Network analysis of DEG indicated that TNF had positive relationships with genes involved with immune system function (e.g., CD14, IL8, IL1B, and TLR2) and negative relationships with genes involved with lipid metabolism (e.g., GPAM, SCD, FABP4, CD36, and LPL) and antioxidant activity (SOD1). Conclusion: Results provided novel information into the early signaling and metabolic pathways in mammary tissue that are associated with the innate immune response to S. uberis infection. Our study indicated that IMI challenge with S. uberis (strain O140J) elicited a strong transcriptomic response, leading to potent activation of pro-inflammatory pathways that were associated with a marked inhibition of lipid synthesis, stress-activated kinase signaling cascades, and PPAR signaling (most likely PPARγ). This latter effect may provide a mechanistic explanation for the inverse relationship between immune response and milk fat synthesis.
UR - http://www.scopus.com/inward/record.url?scp=71549117271&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=71549117271&partnerID=8YFLogxK
U2 - 10.1186/1471-2164-10-542
DO - 10.1186/1471-2164-10-542
M3 - Article
C2 - 19925655
AN - SCOPUS:71549117271
SN - 1471-2164
VL - 10
JO - BMC genomics
JF - BMC genomics
M1 - 542
ER -