TY - GEN
T1 - GenASM
T2 - 53rd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 2020
AU - Cali, Damla Senol
AU - Kalsion, Gurpreet S.
AU - Bingöl, Zülal
AU - Firtina, Can
AU - Subramanian, Lavanya
AU - Kim, Jeremie S.
AU - Ausavarungnirun, Rachata
AU - Alser, Mohammed
AU - Gomez-Luna, Juan
AU - Boroumand, Amirali
AU - Nori, Anant
AU - Scibisz, Allison
AU - Subramoney, Sreenivas
AU - Alkan, Can
AU - Ghose, Saugata
AU - Mutlu, Onur
N1 - Publisher Copyright:
© 2020 IEEE Computer Society. All rights reserved.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/10
Y1 - 2020/10
N2 - Genome sequence analysis has enabled significant advancements in medical and scientific areas such as personalized medicine, outbreak tracing, and the understanding of evolution. To perform genome sequencing, devices extract small random fragments of an organism's DNA sequence (known as reads). The first step of genome sequence analysis is a computational process known as read mapping. In read mapping, each fragment is matched to its potential location in the reference genome with the goal of identifying the original location of each read in the genome. Unfortunately, rapid genome sequencing is currently bottlenecked by the computational power and memory bandwidth limitations of existing systems, as many of the steps in genome sequence analysis must process a large amount of data. A major contributor to this bottleneck is approximate string matching (ASM), which is used at multiple points during the mapping process. ASM enables read mapping to account for sequencing errors and genetic variations in the reads. We propose GenASM, the first ASM acceleration framework for genome sequence analysis. GenASM performs bitvectorbased ASM, which can efficiently accelerate multiple steps of genome sequence analysis. We modify the underlying ASM algorithm (Bitap) to significantly increase its parallelism and reduce its memory footprint. Using this modified algorithm, we design the first hardware accelerator for Bitap. Our hardware accelerator consists of specialized systolic-array-based compute units and on-chip SRAMs that are designed to match the rate of computation with memory capacity and bandwidth, resulting in an efficient design whose performance scales linearly as we increase the number of compute units working in parallel. We demonstrate that GenASM provides significant performance and power benefits for three different use cases in genome sequence analysis. First, GenASM accelerates read alignment for both long reads and short reads. For long reads, GenASM outperforms state-of-the-art software and hardware accelerators by 116× and 3.9×, respectively, while reducing power consumption by 37× and 2.7×. For short reads, GenASM outperforms state-of-the-art software and hardware accelerators by 111× and 1.9×. Second, GenASM accelerates pre-alignment filtering for short reads, with 3.7× the performance of a state-of-theart pre-alignment filter, while reducing power consumption by 1.7× and significantly improving the filtering accuracy. Third, GenASM accelerates edit distance calculation, with 22-12501× and 9.3-400× speedups over the state-of-the-art software library and FPGA-based accelerator, respectively, while reducing power consumption by 548-582× and 67×. We conclude that GenASM is a flexible, high-performance, and low-power framework, and we briefly discuss four other use cases that can benefit from GenASM.
AB - Genome sequence analysis has enabled significant advancements in medical and scientific areas such as personalized medicine, outbreak tracing, and the understanding of evolution. To perform genome sequencing, devices extract small random fragments of an organism's DNA sequence (known as reads). The first step of genome sequence analysis is a computational process known as read mapping. In read mapping, each fragment is matched to its potential location in the reference genome with the goal of identifying the original location of each read in the genome. Unfortunately, rapid genome sequencing is currently bottlenecked by the computational power and memory bandwidth limitations of existing systems, as many of the steps in genome sequence analysis must process a large amount of data. A major contributor to this bottleneck is approximate string matching (ASM), which is used at multiple points during the mapping process. ASM enables read mapping to account for sequencing errors and genetic variations in the reads. We propose GenASM, the first ASM acceleration framework for genome sequence analysis. GenASM performs bitvectorbased ASM, which can efficiently accelerate multiple steps of genome sequence analysis. We modify the underlying ASM algorithm (Bitap) to significantly increase its parallelism and reduce its memory footprint. Using this modified algorithm, we design the first hardware accelerator for Bitap. Our hardware accelerator consists of specialized systolic-array-based compute units and on-chip SRAMs that are designed to match the rate of computation with memory capacity and bandwidth, resulting in an efficient design whose performance scales linearly as we increase the number of compute units working in parallel. We demonstrate that GenASM provides significant performance and power benefits for three different use cases in genome sequence analysis. First, GenASM accelerates read alignment for both long reads and short reads. For long reads, GenASM outperforms state-of-the-art software and hardware accelerators by 116× and 3.9×, respectively, while reducing power consumption by 37× and 2.7×. For short reads, GenASM outperforms state-of-the-art software and hardware accelerators by 111× and 1.9×. Second, GenASM accelerates pre-alignment filtering for short reads, with 3.7× the performance of a state-of-theart pre-alignment filter, while reducing power consumption by 1.7× and significantly improving the filtering accuracy. Third, GenASM accelerates edit distance calculation, with 22-12501× and 9.3-400× speedups over the state-of-the-art software library and FPGA-based accelerator, respectively, while reducing power consumption by 548-582× and 67×. We conclude that GenASM is a flexible, high-performance, and low-power framework, and we briefly discuss four other use cases that can benefit from GenASM.
UR - http://www.scopus.com/inward/record.url?scp=85097332772&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85097332772&partnerID=8YFLogxK
U2 - 10.1109/MICRO50266.2020.00081
DO - 10.1109/MICRO50266.2020.00081
M3 - Conference contribution
AN - SCOPUS:85097332772
T3 - Proceedings of the Annual International Symposium on Microarchitecture, MICRO
SP - 951
EP - 966
BT - Proceedings - 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 2020
PB - IEEE Computer Society
Y2 - 17 October 2020 through 21 October 2020
ER -