GCN for HIN via Implicit Utilization of Attention and Meta-Paths

Di Jin, Zhizhi Yu, Dongxiao He, Carl Yang, Philip Yu, Jiawei Han

Research output: Contribution to journalArticlepeer-review

Abstract

Heterogeneous information network (HIN) embedding, aiming to map the structure and semantic information in a HIN to distributed representations, has drawn considerable research attention. Graph neural networks for HIN embeddings typically adopt a hierarchical attention (including node-level and meta-path-level attentions) to capture the information from meta-path-based neighbors. However, this complicated attention structure often cannot achieve the function of selecting meta-paths due to severe overfitting. Moreover, when propagating information, these methods do not distinguish direct (one-hop) meta-paths from indirect (multi-hop) ones. But from the perspective of network science, direct relationships are often believed to be more essential, which can only be used to model direct information propagation. To address these limitations, we propose a novel neural network method via implicitly utilizing attention and meta-paths, which can relieve the severe overfitting brought by the current over-parameterized attention mechanisms on HIN. We first use the multi-layer graph convolutional network (GCN) framework, which performs a discriminative aggregation at each layer, along with stacking the information propagation of direct linked meta-paths layer-by-layer, realizing the function of attentions for selecting meta-paths in an indirect way. We then give an effective relaxation and improvement via introducing a new propagation operation which can be separated from aggregation. That is, we first model the whole propagation process with well-defined probabilistic diffusion dynamics, and then introduce a random graph-based constraint which allows it to reduce noise with the increase of layers. Extensive experiments demonstrate the superiority of the new approach over state-of-the-art methods.

Original languageEnglish (US)
Pages (from-to)3925-3937
Number of pages13
JournalIEEE Transactions on Knowledge and Data Engineering
Volume35
Issue number4
Early online dateNov 25 2021
DOIs
StatePublished - Apr 2023

Keywords

  • Heterogeneous information networks
  • graph neural networks
  • network embedding

ASJC Scopus subject areas

  • Information Systems
  • Computer Science Applications
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'GCN for HIN via Implicit Utilization of Attention and Meta-Paths'. Together they form a unique fingerprint.

Cite this