Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networks

Ting Yun Cheng, Christopher J. Conselice, Alfonso Aragón-Salamanca, M. Aguena, S. Allam, F. Andrade-Oliveira, J. Annis, A. F.L. Bluck, D. Brooks, D. L. Burke, M. Carrasco Kind, J. Carretero, A. Choi, M. Costanzi, L. N. da Costa, M. E.S. Pereira, J. de Vicente, H. T. Diehl, A. Drlica-Wagner, K. EckertS. Everett, A. E. Evrard, I. Ferrero, P. Fosalba, J. Frieman, J. García-Bellido, D. W. Gerdes, T. Giannantonio, D. Gruen, R. A. Gruendl, J. Gschwend, G. Gutierrez, S. R. Hinton, D. L. Hollowood, K. Honscheid, D. J. James, E. Krause, K. Kuehn, N. Kuropatkin, O. Lahav, M. A.G. Maia, M. March, F. Menanteau, R. Miquel, R. Morgan, F. Paz-Chinchón, A. Pieres, A. A.Plazas Malagón, A. Roodman, E. Sanchez, V. Scarpine, S. Serrano, I. Sevilla-Noarbe, M. Smith, M. Soares-Santos, E. Suchyta, M. E.C. Swanson, G. Tarle, D. Thomas

Research output: Contribution to journalArticlepeer-review

Fingerprint

Dive into the research topics of 'Galaxy morphological classification catalogue of the Dark Energy Survey Year 3 data with convolutional neural networks'. Together they form a unique fingerprint.

Keyphrases

Physics