GAD: General Activity Detection for fast clustering on large data

Jin Xin, Kim Sangkyum, Han Jiawei, Cao Liangliang, Yin Zhijun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we propose GAD (General Activity Detection) for fast clustering on large scale data. Within this framework we design a set of algorithms for different scenarios: (1) Exact GAD algorithm E-GAD, which is much faster than K-Means and gets the same clustering result. (2) Approximate GAD algorithms with different assumptions, which are faster than E-GAD while achieving different degrees of approximation. (3) GAD based algorithms to handle the "large clusters" problem which appears in many large scale clustering applications. Two existing activity detection algorithms GT and CGAUTC are special cases under the framework. The most important contribution of our work is that the framework is the general solution to exploit activity detection for fast clustering in both exact and approximate senarios, and our proposed algorithms within the framework can achieve very high speed. Extensive experiments have been conducted on several large datasets from various real world applications; the results show that our proposed algorithms are effective and efficient.

Original languageEnglish (US)
Title of host publicationSociety for Industrial and Applied Mathematics - 9th SIAM International Conference on Data Mining 2009, Proceedings in Applied Mathematics 133
Pages1-12
Number of pages12
StatePublished - 2009
Event9th SIAM International Conference on Data Mining 2009, SDM 2009 - Sparks, NV, United States
Duration: Apr 30 2009May 2 2009

Publication series

NameSociety for Industrial and Applied Mathematics - 9th SIAM International Conference on Data Mining 2009, Proceedings in Applied Mathematics
Volume1

Other

Other9th SIAM International Conference on Data Mining 2009, SDM 2009
Country/TerritoryUnited States
CitySparks, NV
Period4/30/095/2/09

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Software
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'GAD: General Activity Detection for fast clustering on large data'. Together they form a unique fingerprint.

Cite this