TY - JOUR
T1 - GABAA receptor α5 subunits contribute to GABA A,slow synaptic inhibition in mouse hippocampus
AU - Zarnowska, Ewa D.
AU - Keist, Ruth
AU - Rudolph, Uwe
AU - Pearce, Robert A.
PY - 2009/3
Y1 - 2009/3
N2 - γ-Aminobutyric acid type A (GABAA) receptor α5 subunits, which are heavily expressed in the hippocampus, are potential drug targets for improving cognitive function. They are found at synaptic and extrasynaptic sites and have been shown to mediate tonic inhibition in pyramidal neurons. We tested the hypothesis that α5 subunits also contribute to synaptic inhibition by measuring the effect of diazepam (DZ) on spontaneous and stimulus-evoked inhibitory postsynaptic currents (IPSCs) in genetically modified mice carrying a point mutation in the α5 subunit (α5-H105R) that renders those receptors insensitive to benzodiazepines. In wild type mice, DZ (1 μM) increased the amplitude of spontaneous IPSCs (sIPSCs) and stimulus-evoked GABAA,slow IPSCs (eIPSCs) and prolonged the decay of GABAA,fast sIPSCs. In α5-mutant mice, DZ increased the amplitude of a small-amplitude subset of sIPSCs (<50 pA) and eIPSCs (<300 pA) GABAA,slow and prolonged the decay of GABAA,fast sIPSCs, but failed to increase the amplitude of larger sIPSCs and eIPSCs GABAA,slow. These results indicate that α5 subunits contribute to a large-amplitude subset of GABAA,slow synapses and implicate these synapses in modulation of cognitive function by drugs that target α5 subunits.
AB - γ-Aminobutyric acid type A (GABAA) receptor α5 subunits, which are heavily expressed in the hippocampus, are potential drug targets for improving cognitive function. They are found at synaptic and extrasynaptic sites and have been shown to mediate tonic inhibition in pyramidal neurons. We tested the hypothesis that α5 subunits also contribute to synaptic inhibition by measuring the effect of diazepam (DZ) on spontaneous and stimulus-evoked inhibitory postsynaptic currents (IPSCs) in genetically modified mice carrying a point mutation in the α5 subunit (α5-H105R) that renders those receptors insensitive to benzodiazepines. In wild type mice, DZ (1 μM) increased the amplitude of spontaneous IPSCs (sIPSCs) and stimulus-evoked GABAA,slow IPSCs (eIPSCs) and prolonged the decay of GABAA,fast sIPSCs. In α5-mutant mice, DZ increased the amplitude of a small-amplitude subset of sIPSCs (<50 pA) and eIPSCs (<300 pA) GABAA,slow and prolonged the decay of GABAA,fast sIPSCs, but failed to increase the amplitude of larger sIPSCs and eIPSCs GABAA,slow. These results indicate that α5 subunits contribute to a large-amplitude subset of GABAA,slow synapses and implicate these synapses in modulation of cognitive function by drugs that target α5 subunits.
UR - http://www.scopus.com/inward/record.url?scp=64749100839&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=64749100839&partnerID=8YFLogxK
U2 - 10.1152/jn.91203.2008
DO - 10.1152/jn.91203.2008
M3 - Article
C2 - 19073796
AN - SCOPUS:64749100839
SN - 0022-3077
VL - 101
SP - 1179
EP - 1191
JO - Journal of neurophysiology
JF - Journal of neurophysiology
IS - 3
ER -