GABA A receptors involved in sleep and anaesthesia: β1- versus β3-containing assemblies

Yevgenij Yanovsky, Stephan Schubring, Wiebke Fleischer, Günter Gisselmann, Xin Ran Zhu, Hermann Lübbert, Hanns Hatt, Uwe Rudolph, Helmut L. Haas, Olga A. Sergeeva

Research output: Contribution to journalArticlepeer-review

Abstract

The histaminergic neurons of the posterior hypothalamus (tuberomamillary nucleus-TMN) control wakefulness, and their silencing through activation of GABA A receptors (GABA AR) induces sleep and is thought to mediate sedation under propofol anaesthesia. We have previously shown that the β1 subunit preferring fragrant dioxane derivatives (FDD) are highly potent modulators of GABA AR in TMN neurons. In recombinant receptors containing the β3N265M subunit, FDD action is abolished and GABA potency is reduced. Using rat, wild-type and β3N265M mice, FDD and propofol, we explored the relative contributions of β1- and β3-containing GABA AR to synaptic transmission from the GABAergic sleep-on ventrolateral preoptic area neurons to TMN. In β3N265M mice, GABA potency remained unchanged in TMN neurons, but it was decreased in cultured posterior hypothalamic neurons with impaired modulation of GABA AR by propofol. Spontaneous and evoked GABAergic synaptic currents (IPSC) showed β1-type pharmacology, with the same effects achieved by 3 μM propofol and 10 μM PI24513. Propofol and the FDD PI24513 suppressed neuronal firing in the majority of neurons at 5 and 100 μM, and in all cells at 10 and 250 μM, respectively. FDD given systemically in mice induced sedation but not anaesthesia. Propofol-induced currents were abolished (1-6 μM) or significantly reduced (12 μM) in β3N265M mice, whereas gating and modulation of GABA AR by PI24513 as well as modulation by propofol were unchanged. In conclusion, β1-containing (FDD-sensitive) GABA AR represent the major receptor pool in TMN neurons responding to GABA, while β3-containing (FDD-insensitive) receptors are gated by low micromolar doses of propofol. Thus, sleep and anaesthesia depend on different GABA AR types.

Original languageEnglish (US)
Pages (from-to)187-199
Number of pages13
JournalPflugers Archiv European Journal of Physiology
Volume463
Issue number1
DOIs
StatePublished - Jan 2012
Externally publishedYes

Keywords

  • GABA
  • Histamine
  • Hypothalamus
  • Patch clamp
  • Sleep

ASJC Scopus subject areas

  • Physiology
  • Clinical Biochemistry
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'GABA A receptors involved in sleep and anaesthesia: β1- versus β3-containing assemblies'. Together they form a unique fingerprint.

Cite this