Fusion by optimal dynamic mixtures of proposal distributions

Tony X. Han, Huazhong Ning, Thomas S. Huang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We propose a fusion framework to integrate multiple cues for tracking by finding a set of optimal dynamic weights for different tracking modalities. In the setup of Bayesian sequential estimation, we give an optimal criterion to find the dynamic weight for each modality: Using a linear combination of the proposal distributions from multiple cues to approach the posterior distribution p(xt|yt)-The fusion problem is then formulated as an optimization problem with a non-convex objective function. We further convert the optimization problem to a constrained convex programming problem. The equations for finding the global optimal solution are given and an approximate analytical solution is derived. The derived approximate analytical solution is justified by comparing to the fusion weights/mixture weights in [8, 32]. The fusion framework can find out reliable cues and rely more on them dynamically. We test the proposed fusion framework for human tracking on a very challenging surveillance video taken at crowded subway station. We also test the fusion framework for articulated tracking. The claim that the proposed fusion framework can integrate weak modalities to improve tracking performance is supported by the promising results.

Original languageEnglish (US)
Title of host publication2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009
Pages66-73
Number of pages8
DOIs
StatePublished - Nov 20 2009
Event2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009 - Miami, FL, United States
Duration: Jun 20 2009Jun 25 2009

Publication series

Name2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009

Other

Other2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009
Country/TerritoryUnited States
CityMiami, FL
Period6/20/096/25/09

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Fusion by optimal dynamic mixtures of proposal distributions'. Together they form a unique fingerprint.

Cite this