Fusing multiple Bayesian knowledge sources

Eugene Santos, John T. Wilkinson, Eunice E. Santos

Research output: Contribution to journalArticlepeer-review


We address the problem of information fusion in uncertain environments. Imagine there are multiple experts building probabilistic models of the same situation and we wish to aggregate the information they provide. There are several problems we may run into by naively merging the information from each. For example, the experts may disagree on the probability of a certain event or they may disagree on the direction of causality between two events (e.g., one thinks A causes B while another thinks B causes A). They may even disagree on the entire structure of dependencies among a set of variables in a probabilistic network. In our proposed solution to this problem, we represent the probabilistic models as Bayesian Knowledge Bases (BKBs) and propose an algorithm called Bayesian knowledge fusion that allows the fusion of multiple BKBs into a single BKB that retains the information from all input sources. This allows for easy aggregation and de-aggregation of information from multiple expert sources and facilitates multi-expert decision making by providing a framework in which all opinions can be preserved and reasoned over.

Original languageEnglish (US)
Pages (from-to)935-947
Number of pages13
JournalInternational Journal of Approximate Reasoning
Issue number7
StatePublished - Oct 2011
Externally publishedYes


  • Bayesian Knowledge Bases
  • Knowledge fusion
  • Probability theory

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Software
  • Artificial Intelligence
  • Applied Mathematics


Dive into the research topics of 'Fusing multiple Bayesian knowledge sources'. Together they form a unique fingerprint.

Cite this