@book{3cf1fc6d98ff4c88a2b625d14cc53592,
title = "Fundamental studies of the effect of crystal defects on CuInSe2/CdS heterojunction behavior: Final report, 28 June 1993-30 June 1998",
abstract = "This report describes the work performed by the University of Illinois at Urbana-Champaign. The following results were obtained under the work funded by this subcontract: (1) Point defects and electronic properties of Cu(In{sub 1-x}Ga{sub x})Se{sub 2}: New record results for hole mobilities in Cu(In{sub 1-x}Ga{sub x})Se{sub 2} based on single crystals grown by Rockett's group; Demonstrated the role of Ga in determining hole concentrations; Showed that Ga does not affect the hole mobility in this material and why this is the case; Determined the diffusion coefficient for Ga in single-crystal Cu(In{sub 1-x}Ga{sub x})Se{sub 2}; Demonstrated the structure and optoelectronic properties of the CuIn{sub 3}Se{sub 5} ordered-defect phase of CuInSe{sub 2}; Characterized the detailed effects of Na on Cu(In{sub 1-x}Ga{sub x})Se{sub 2} solar cells and on the fundamental properties of the material itself (reduces compensating donors in p-type materials); and In collaboration with groups at the Universities of Salford and Liverpool in the United Kingdom, studied the effect of ion implantation damage on Cu(In{sub 1-x}Ga{sub x})Se{sub 2} single-crystals. (2) Materials for and characterization of devices: Developed a novel contact metallurgy that improves adhesion to the underlying Mo back-contact in solar cells made with Cu(In{sub 1-x}Ga{sub x})Se{sub 2}; (This material has also yielded substantial novel materials science behaviors, including grain rotation and growth prior to phase separation in a metastable binary alloy.) Characterized the electroluminescence as a function of temperature and Ga content in Cu(In{sub 1-x}Ga{sub x})Se{sub 2} solar cells and showed that the radiative recombination pathways are not band-to-band as in normal semiconductors, but rather, proceed through defect states; and Working with a group at the University of Uppsala in Sweden, demonstrated novel aspects of the bonding and chemistry of dip-coated CdS heterojunction materials used as heterojunction partner materials in Cu(In{sub 1-x}Ga{sub x})Se{sub 2} solar cells.",
author = "Angus Rockett",
year = "1999",
month = sep,
doi = "10.2172/750887",
language = "English (US)",
series = "NREL Subcontractor Report",
publisher = "National Renewable Energy Laboratory",
number = "NREL/SR-590-25623",
}